People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thieme, Mike
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Advanced carbon reinforced concrete technologies for façade elements of nearly zero-energy buildingscitations
- 2020Determining the damage and failure behaviour of textile reinforced composites under combined in-plane and out-of-plane loadingcitations
- 2018Reinforcement Systems for Carbon Concrete Composites Based on Low-Cost Carbon Fiberscitations
- 2017Probabilistically based defect analysis and structure-property-relations in CF
- 2017Materialmodelle für textilverstärkte Kunststoffe
- 2017Influence of out-of-plane compression induced damage effects on the mechanical properties of C/C
- 2016Theoretical and experimental approaches for the determination of process-structure-property-relations in carbon fibres
- 2015Inter fibre cracking behaviour of CFRP under very high cycle fatigue loading
- 2014Kombiniertes Sensorsystem zur ganzheitlichen Überwachung von Faserverbundstrukturen (KOMBISENS)
- 2011Hochleistungsholztragwerke - HHT- Entwicklung von hochbelastbaren Verbundbauweisen im Holzbau mit faserverstärkten Kunststoffen, technischen Textilien und Formpressholz
Places of action
Organizations | Location | People |
---|
article
Reinforcement Systems for Carbon Concrete Composites Based on Low-Cost Carbon Fibers
Abstract
<jats:p>Carbon concrete polyacrylonitrile (PAN)/lignin-based carbon fiber (CF) composites are a new promising material class for the building industry. The replacement of the traditional heavy and corroding steel reinforcement by carbon fiber (CF)-based reinforcements offers many significant advantages: a higher protection of environmental resources because of lower CO2 consumption during cement production, a longer lifecycle and thus, much less damage to structural components and a higher degree of design freedom because lightweight solutions can be realized. However, due to cost pressure in civil engineering, completely new process chains are required to manufacture CF-based reinforcement structures for concrete. This article describes the necessary process steps in order to develop CF reinforcement: (1) the production of cost-effective CF using novel carbon fiber lines, and (2) the fabrication of CF rebars with different geometry profiles. It was found that PAN/lignin-based CF is currently the promising material with the most promise to meet future market demands. However, significant research needs to be undertaken in order to improve the properties of lignin-based and PAN/lignin-based CF, respectively. The CF can be manufactured to CF-based rebars using different manufacturing technologies which are developed at a prototype level in this study.</jats:p>