People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Böhm, Robert
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Multifunctionality Analysis of Structural Supercapacitors— A Reviewcitations
- 2023Fast generation of high-performance driveshafts: A digital approach to automated linked topology and design optimization
- 2023A Micromechanical Modeling Approach for the Estimation of the Weathering-Induced Degradation of Wind Turbine Bladescitations
- 2022Advanced carbon reinforced concrete technologies for façade elements of nearly zero-energy buildingscitations
- 2022Scale-up of aerogel manufacturing plant for industrial production
- 2022DMA of TPU films and the modelling of their viscoelastic properties for noise reduction in jet enginescitations
- 2022Life Cycle Assessment of Advanced Building Components towards NZEBscitations
- 2022An Experimental Approach for the Determination of the Mechanical Properties of Base-Excited Polymeric Specimens at Higher Frequency Modescitations
- 2020Determining the damage and failure behaviour of textile reinforced composites under combined in-plane and out-of-plane loadingcitations
- 2019Experimental and numerical determination of the local fiber volume content of unidirectional non-crimp fabrics with forming effectscitations
- 2018Phase-field modelling of fracture in heterogeneous materialscitations
- 2018Reinforcement Systems for Carbon Concrete Composites Based on Low-Cost Carbon Fiberscitations
- 2017Probabilistically based defect analysis and structure-property-relations in CF
- 2017Materialmodelle für textilverstärkte Kunststoffe
- 2017Influence of out-of-plane compression induced damage effects on the mechanical properties of C/C
- 2016Thermal treatment of carbon fibres up to 2175 K and impact on carbon fibre and related polymer composite properties
- 2016Theoretical and experimental approaches for the determination of process-structure-property-relations in carbon fibres
- 2016Strain rate dependent deformation and damage behaviour of textile-reinforced thermoplastic composites
- 2013Metallgussverbundbauteil
- 2012Computer tomography-aided non-destructive and destructive testing in composite engineering
- 2008Numerical and experimental deformation and failure analysis of 3D-textile reinforced lightweight structures under impact loads
- 2006Analiza wytężenia kompozytowych elementów rurociągów
- 2005Damage and impact simulation of textile-reinforced composites using FEA
- 2005Manufacture and multiaxial test of composite tube specimens with braided glass fiber reinforcementcitations
Places of action
Organizations | Location | People |
---|
article
Reinforcement Systems for Carbon Concrete Composites Based on Low-Cost Carbon Fibers
Abstract
<jats:p>Carbon concrete polyacrylonitrile (PAN)/lignin-based carbon fiber (CF) composites are a new promising material class for the building industry. The replacement of the traditional heavy and corroding steel reinforcement by carbon fiber (CF)-based reinforcements offers many significant advantages: a higher protection of environmental resources because of lower CO2 consumption during cement production, a longer lifecycle and thus, much less damage to structural components and a higher degree of design freedom because lightweight solutions can be realized. However, due to cost pressure in civil engineering, completely new process chains are required to manufacture CF-based reinforcement structures for concrete. This article describes the necessary process steps in order to develop CF reinforcement: (1) the production of cost-effective CF using novel carbon fiber lines, and (2) the fabrication of CF rebars with different geometry profiles. It was found that PAN/lignin-based CF is currently the promising material with the most promise to meet future market demands. However, significant research needs to be undertaken in order to improve the properties of lignin-based and PAN/lignin-based CF, respectively. The CF can be manufactured to CF-based rebars using different manufacturing technologies which are developed at a prototype level in this study.</jats:p>