People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yehia, Sherif
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Mechanical, electrical and self-healing properties of carbon fibre-reinforced ultra-lightweight ECCcitations
- 2023Development and evaluation of conductive ultra-lightweight cementitious composites for smart and sustainable infrastructure applicationscitations
- 2023First principles and mean field study on the magnetocaloric effect of YFe3 and HoFe3 compoundscitations
- 2023Shear performance of lightweight SCC composite beam internally reinforced with CFRP laminate stirrups and GFRP barscitations
- 2023Self-Consolidated Concrete-to-Conductive Concrete Interfacecitations
- 2023Shear strengthening performance of fiber reinforced lightweight SCC beamscitations
- 2022DEVELOPMENT OF HIGH STRENGTH CONCRETE WITH FINE MATERIALS LOCALLY AVAILABLE IN UAE
- 2022Performance of Different Concrete Types Exposed to Elevated Temperaturescitations
- 2022Effects of aggregate type, aggregate pretreatment method, supplementary cementitious materials, and macro fibers on fresh and hardened properties of high-strength all-lightweight self-compacting concretecitations
- 2021High strength flowable lightweight concrete incorporating low C3A cement, silica fume, stalite and macro-polyfelin polymer fibrescitations
- 2020Lap splices in confined self-compacting lightweight concretecitations
Places of action
Organizations | Location | People |
---|
article
Self-Consolidated Concrete-to-Conductive Concrete Interface
Abstract
<p>In this paper, the mechanical properties and bond strength of composite samples that consist of a conductive concrete (CC) layer and a self-consolidated concrete (SCC) layer are investigated. The bond strength study includes two parameters: (1) surface preparation and (2) casting and testing directions. The surface preparation study shows that, compared to the other methods in this study, the shear key method is the most suitable surface preparation method to fully utilize the CC in a composite. Moreover, the casting direction study reveals that the strength is heavily dependent on the type of test used along with CC’s layer positioning. The flexural strength study confirms that positioning the CC mix in the tensile region is beneficial since it can increase the flexural strength of a structure because of the hybrid steel fibers included in the mixture. Finally, different codes/specifications and published theoretical results are used to predict the CC’s mechanical properties, and the predictions are not as accurate as the SCC predictions, which can be attributed to the presence of conductive fillers in the CC mix.</p>