Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Korma, Sameh A.

  • Google
  • 1
  • 10
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Hydrolysis, Microstructural Profiling and Utilization of Cyamopsis tetragonoloba in Yoghurt5citations

Places of action

Chart of shared publication
Mehany, Taha
1 / 1 shared
Walayat, Noman
1 / 1 shared
Esatbeyoglu, Tuba
1 / 2 shared
Iqbal, Muhammad Waheed
1 / 2 shared
Ismail, Tariq
1 / 1 shared
Hussain, Majid
1 / 2 shared
Khalid, Nazia
1 / 1 shared
Akhtar, Saeed
1 / 1 shared
Azam, Muhammad
1 / 2 shared
Mahmood Khan, Imran
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Mehany, Taha
  • Walayat, Noman
  • Esatbeyoglu, Tuba
  • Iqbal, Muhammad Waheed
  • Ismail, Tariq
  • Hussain, Majid
  • Khalid, Nazia
  • Akhtar, Saeed
  • Azam, Muhammad
  • Mahmood Khan, Imran
OrganizationsLocationPeople

article

Hydrolysis, Microstructural Profiling and Utilization of Cyamopsis tetragonoloba in Yoghurt

  • Mehany, Taha
  • Walayat, Noman
  • Esatbeyoglu, Tuba
  • Korma, Sameh A.
  • Iqbal, Muhammad Waheed
  • Ismail, Tariq
  • Hussain, Majid
  • Khalid, Nazia
  • Akhtar, Saeed
  • Azam, Muhammad
  • Mahmood Khan, Imran
Abstract

<p>The present study investigates the hydrolysis, microstructural profiling and utilization of guar gum (Cyamopsis tetragonoloba) as a prebiotic in a yoghurt. Guar galactomannans (GG) was purified and partially depolymerized using an acid, alkali and enzyme to improve its characteristics and increase its utilization. The prebiotic potential of hydrolyzed guar gum was determined using Basel and supplemented media. Crude guar galactomannans (CGG), purified guar galactomannans (PGG), base hydrolyzed guar galactomannans (BHGG), acid hydrolyzed guar galactomannans (AHGG) and enzymatic hydrolyzed guar galactomannans (EHGG) were analyzed using scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Yoghurt was prepared with a starter culture and incorporating guar gum, its hydrolyzed forms (0.1, 0.5 and 1%) and Bifidobacterium bifidum. The results showed that PHGG significantly improved the viability of B. bifidum. SEM revealed a significant change in the surface morphology of guar gum after acidic and enzymatic hydrolysis. Enzymatic hydrolysis developed a well-defined framework within guar gum molecules. The XRD pattern of CGG, PGG and AHGG presented an amorphous structure and showed low overall crystallinity while EHGG and BHGG resulted in slightly increased crystallinity regions. FTIR spectral analysis suggested that, after hydrolysis, there was no major transformation of functional groups. The addition of the probiotic and prebiotic significantly improved the physiochemical properties of the developed yoghurt. The firmness, cohesiveness, adhesiveness and syneresis were increased while consistency and viscosity were decreased during storage. In sum, a partial hydrolysis of guar gum could be achieved using inexpensive methods with commercial significance.</p>

Topics
  • surface
  • amorphous
  • scanning electron microscopy
  • x-ray diffraction
  • viscosity
  • Fourier transform infrared spectroscopy
  • crystallinity