Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Klápště, Jaroslav

  • Google
  • 2
  • 5
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Genomics-enabled management of genetic resources in radiata pine7citations
  • 2019Stand density and genetic improvement have site-specific effects on the economic returns from Pinus radiata plantations13citations

Places of action

Chart of shared publication
Stovold, Grahame T.
1 / 1 shared
Slavov, Gancho
1 / 1 shared
Paget, Mark
1 / 3 shared
Moore, John R.
1 / 1 shared
Dash, Jonathan P.
1 / 1 shared
Chart of publication period
2022
2019

Co-Authors (by relevance)

  • Stovold, Grahame T.
  • Slavov, Gancho
  • Paget, Mark
  • Moore, John R.
  • Dash, Jonathan P.
OrganizationsLocationPeople

article

Genomics-enabled management of genetic resources in radiata pine

  • Stovold, Grahame T.
  • Slavov, Gancho
  • Klápště, Jaroslav
  • Paget, Mark
Abstract

<p>Traditional tree improvement is cumbersome and costly. Our main objective was to assess the extent to which genomic data can currently accelerate and improve decision making in this field. We used diameter at breast height (DBH) and wood density (WD) data for 4430 tree genotypes and single-nucleotide polymorphism (SNP) data for 2446 tree genotypes. Pedigree reconstruction was performed using a combination of maximum likelihood parentage assignment and matching based on identity-by-state (IBS) similarity. In addition, we used best linear unbiased prediction (BLUP) methods to predict phenotypes using SNP markers (GBLUP), recorded pedigree information (ABLUP), and single-step “blended” BLUP (HBLUP) combining SNP and pedigree information. We substantially improved the accuracy of pedigree records, resolving the inconsistent parental information of 506 tree genotypes. This led to substantially increased predictive ability (i.e., by up to 87%) in HBLUP analyses compared to a baseline from ABLUP. Genomic prediction was possible across populations and within previously untested families with moderately large training populations (N = 800–1200 tree genotypes) and using as few as 2000–5000 SNP markers. HBLUP was gen-erally more effective than traditional ABLUP approaches, particularly after dealing appropriately with pedigree uncertainties. Our study provides evidence that genome-wide marker data can sig-nificantly enhance tree improvement. The operational implementation of genomic selection has started in radiata pine breeding in New Zealand, but further reductions in DNA extraction and genotyping costs may be required to realise the full potential of this approach.</p>

Topics
  • density
  • impedance spectroscopy
  • extraction
  • wood
  • ion-beam spectroscopy