People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Leese, Hs
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Mono-Acetylenes as New Crosslinkers for All-Carbon Living Charge Carbon Nanotubide Organogelscitations
- 2022High-k dielectric screen-printed inks for mechanical energy harvesting devicescitations
- 2021Assessing the conversion of various nylon polymers in the hydrothermal liquefaction of macroalgaecitations
- 2019Interfacially-grafted Single Wall Carbon Nanotube / Poly (vinyl alcohol) Composite Fiberscitations
- 2017Grafting from versus Grafting to Approaches for the Functionalization of Graphene Nanoplatelets with Poly(methyl methacrylate)citations
- 2017Reductive dissolution of supergrowth carbon nanotubes for tougher nanocomposites by reactive coagulation spinningcitations
Places of action
Organizations | Location | People |
---|
article
Assessing the conversion of various nylon polymers in the hydrothermal liquefaction of macroalgae
Abstract
<p>Marine macroalgae offers a promising third generation feedstock for the production of fuels and chemicals, avoiding competition with conventional agriculture and potentially helping to improve eutrophication in seas and oceans. However, an increasing amount of plastic is distributed into the oceans, and as such contaminating macroalgal beds. One of the major plastic contaminants is nylon 6 derived from discarded fishing gear, though an increasing amount of alternative nylon polymers, derived from fabrics, are also observed. This study aimed to assess the effect of these nylon contaminants on the hydrothermal liquefaction of Fucus serratus. The hydrothermal liquefaction (HTL) of macroalgae was undertaken at 350<sup>◦</sup> C for 10 min, with a range of nylon polymers (nylon 6, nylon 6/6, nylon 12 and nylon 6/12), in the blend of 5, 20 and 50 wt.% nylon to biomass; 17 wt.% biocrude was achieved from a 50% blend of nylon 6 with F. serratus. In addition, nylon 6 completely broke down in the system producing the monomer caprolactam. The suitability of converting fishing gear was further demonstrated by conversion of actual fishing line (nylon 6) with the macroalgae, producing an array of products. The alternative nylon polymer blends were less reactive, with only 54% of the nylon 6/6 breaking down under the HTL conditions, forming cyclopentanone which distributed into the biocrude phase. Nylon 6/12 and nylon 12 were even less reactive, and only traces of the monomer cyclododecanone were observed in the biocrude phase. This study demonstrates that while nylon 6 derived from fishing gear can be effectively integrated into a macroalgal biorefinery, alternative nylon polymers from other sectors are too stable to be converted under these conditions and present a real challenge to a macroalgal biorefinery.</p>