Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sharif, Aamer

  • Google
  • 2
  • 3
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Experimental Assessment of Hole Quality and Tool Condition in the Machining of an Aerospace Alloy7citations
  • 2022Assessment of Hole Quality, Thermal Analysis, and Chip Formation during Dry Drilling Process of Gray Cast Iron ASTM A482citations

Places of action

Chart of shared publication
Zahir, Muhammad Zeeshan
1 / 4 shared
Giasin, Khaled
2 / 48 shared
Hussain, Aqib
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Zahir, Muhammad Zeeshan
  • Giasin, Khaled
  • Hussain, Aqib
OrganizationsLocationPeople

article

Assessment of Hole Quality, Thermal Analysis, and Chip Formation during Dry Drilling Process of Gray Cast Iron ASTM A48

  • Giasin, Khaled
  • Hussain, Aqib
  • Sharif, Aamer
Abstract

<jats:p>The cutting parameters in drilling operations are important for high-quality holes and productivity improvement in any manufacturing industry. This study investigates the effects of spindle speed and feed rate on temperature, surface roughness, hole size, circularity, and chip formation during dry drilling of gray cast iron ASTM A48. The results showed that the temperature increased as spindle speed and feed rate increased. The surface roughness had an inverse relationship with the spindle speed and direct relation with the feed rate. Furthermore, hole size increased with increased spindle speed and decreased as the feed rate increased, while hole circularity decreased with increasing both the spindle speed and feed rate. The analysis of variance (ANOVA) indicated that the spindle speed had the highest percentage contribution of 56.24% on temperature, followed by the feed rate with 42.35%. The surface roughness was highly influenced by the feed rate and the spindle speed with 55% and 44.12%, respectively. While the hole size was highly influenced by the feed rate with a 74.18% percentage contribution, and the contribution of spindle speed was 21.36%. In addition, the feed rate has a percentage contribution of 70.82% on circularity, which is higher than the spindle speed of 24.26% percentage contribution. The results also showed that thick and discontinuous chips were generated at higher feed rates, while long continuous chips were produced at high spindle speeds.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • thermal analysis
  • iron
  • grey cast iron