People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Appiah, Augustine Nana Sekyi
Silesian University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024First-Principles Approach to Finite Element Simulation of Flexible Photovoltaics
- 2023Stabilization of Inorganic Perovskite Solar Cells with a 2D Dion–Jacobson Passivating Layercitations
- 2023Fabrication, Properties, and Performance of Polymer-Clay Nanocomposites for Organic Dye Removal from Aqueous Mediacitations
- 2022Hardfacing of mild steel with wear-resistant Ni-based powders containing tungsten carbide particles using powder plasma transferred arc welding technologycitations
Places of action
Organizations | Location | People |
---|
article
First-Principles Approach to Finite Element Simulation of Flexible Photovoltaics
Abstract
<jats:p>This study explores the potential of copper-doped nickel oxide (Cu:NiO) as a hole transport layer (HTL) in flexible photovoltaic (PV) devices using a combined first-principles and finite element analysis approach. Density functional theory (DFT) calculations reveal that Cu doping introduces additional states in the valence band of NiO, leading to enhanced charge transport. Notably, Cu:NiO exhibits a direct band gap (reduced from 3.04 eV in NiO to 1.65 eV in the stable supercell structure), facilitating the efficient hole transfer from the active layer. Furthermore, the Fermi level shifts towards the valence band in Cu:NiO, promoting hole mobility. This translates to an improved photovoltaic performance, with Cu:NiO-based HTLs achieving ~18% and ~9% power conversion efficiencies (PCEs) in perovskite and poly 3-hexylthiophene: 1-3-methoxycarbonyl propyl-1-phenyl 6,6 C 61 butyric acid methyl ester (P3HT:PCBM) polymer solar cells, respectively. Finally, a finite element analysis demonstrates the potential of these composite HTLs with Poly 3,4-ethylene dioxythiophene)—polystyrene sulfonate (PEDOT:PSS) in flexible electronics design and the optimization of printing processes. Overall, this work highlights Cu:NiO as a promising candidate for high-performance and flexible organic–inorganic photovoltaic cells.</jats:p>