People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kozłowski, Mirosław
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024The Preparation and Properties of a Hydrogen-Sensing Field-Effect Transistor with a Gate of Nanocomposite C-Pd Film
- 2022Solid-State Rotary Friction-Welded Tungsten and Mild Steel Jointscitations
- 2022Atomic migration and ordering phenomena in bulk and thin films of FePd and FePt
- 2021RENiO3 Single Crystals (RE = Nd, Sm, Gd, Dy, Y, Ho, Er, Lu) Grown from Molten Salts under 2000 bar of Oxygen Gas Pressurecitations
- 2018Studies of field emission process influence on changes in CNT films with different CNT superficial density
- 2017Atomistic origin of the thermodynamic activation energy for self-diffusion and order-order relaxation in intermetallic compounds II : Monte Carlo simulation of B2-ordering binariescitations
- 2017Decomposition of palladium acetate and C60 fullerite during thermal evaporation in PVD processcitations
- 2017Atomistic origin of the thermodynamic activation energy for self-diffusion and order-order relaxation in intermetallic compounds I : analytical approachcitations
- 2016Electrochemical copper composite coatings with graphene as a dispersion phase
- 2015Influence of duration time of CVD process on emissive properties of carbon nanotubes filmscitations
- 2015C-Pd Films as Material for Optical Sensor of Hydrogen
- 2015Influence of Substrate Type on Structure of C-Pd Thin Filmscitations
- 2014SiC (0001) and (000$bar{1}$) surfaces diffusion parameters estimated by means of atomistic Kinetic Monte Carlo simulationscitations
- 2014Superstructure transformations in high-temperature intermetallic nanolayers : atomistic simulationcitations
- 2014Method of determination of palladium concentration for C-Pd nanostructural films as a function of film thickness, roughness and topography
- 2014The Influence of Technological PVD Process Parameters on the Topography, Crystal and Molecular Structure of Nanocomposite Films Containing Palladium Nanograinscitations
- 2013Annealing time effects on the surface morphology of C–Pd films prepared on silicon covered with SiO2
- 2013Surface induced superstructure transformation in L1_{0} FePt by Monte Carlo simulations implemented with Analytic Bond-Order Potentialscitations
- 2008Atomic ordering in nano-layered L1<inf>0</inf> Ab binaries: Multiscale Monte-Carlo simulations
Places of action
Organizations | Location | People |
---|
article
The Preparation and Properties of a Hydrogen-Sensing Field-Effect Transistor with a Gate of Nanocomposite C-Pd Film
Abstract
<jats:p>The objective of this paper is to evaluate the effect of a nanostructured C-Pd film deposited in the gate area of a field-effect transistor (FET) with a carbon–palladium composite gate (C-Pd/FET) on the hydrogen-sensing properties of the transistor. The method of preparing a field-effect transistor (FET) with a C-Pd film deposited as a gate and the properties of such a transistor and the film itself are presented. The C-Pd film deposited by PVD method on the gate area serves as an active layer. The PVD process was carried out in a dynamic vacuum of 10−5 mbar from two separated sources—one containing fullerenes (C60) and the other containing palladium acetate. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS, EDX) and electrical property studies were used to the characterize C-Pd films and FET/C-Pd structures. SEM observations revealed the topography of C-Pd films and FET/C-Pd transistors. EDS/EDX microanalysis was applied to visualize the arrangement of elements on the studied surfaces. The changes in electrical properties (resistance and relative resistance) due to the presence of hydrogen were studied in a designed and computerized experimental set-up. The enhanced properties of the FET/C-Pd transistor are demonstrated in terms of hydrogen detection.</jats:p>