Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Majó, Marc

  • Google
  • 1
  • 4
  • 3

Universitat de Barcelona

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Thermal Cycling Test of Solar Salt in Contact with Sustainable Solid Particles for Concentrating Solar Power (CSP) Plants3citations

Places of action

Chart of shared publication
Fernandez, Ana Ines
1 / 2 shared
Calderon, Alejandro
1 / 1 shared
Barreneche, Camila
1 / 4 shared
Svobodova-Sedlackova, Adela
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Fernandez, Ana Ines
  • Calderon, Alejandro
  • Barreneche, Camila
  • Svobodova-Sedlackova, Adela
OrganizationsLocationPeople

article

Thermal Cycling Test of Solar Salt in Contact with Sustainable Solid Particles for Concentrating Solar Power (CSP) Plants

  • Fernandez, Ana Ines
  • Calderon, Alejandro
  • Barreneche, Camila
  • Svobodova-Sedlackova, Adela
  • Majó, Marc
Abstract

<jats:p>Thermal energy storage (TES) is crucial in bridging the gap between energy demand and supply globally. Concentrated Solar Power (CSP) plants, employing molten salts for thermal storage, stand as an advanced TES technology. However, molten salts have drawbacks like corrosion, solidification at lower temperatures, and high costs. To overcome these limitations, research is focusing on alternative TES materials such as ceramic particles. These solids match molten salts in energy density and can withstand higher temperatures, making them well-suited for CSP systems. This study revolves around subjecting Solar Salt alone and Solar Salt alongside Volcanic Ash (VA) and Electric Arc Furnace Slag (EAFS) to a comprehensive thermal cycling test. This test is designed to assess the compatibility over the thermal cycles of the Solar Salt and the Solar Salt in contact with these solids in a CSP plant with a thermocline configuration. With a final thermal and chemical evaluation, our observations indicate that EAFS and VA demonstrate promising compatibility but an increase in the reduction rate of the Solar Salt due to a catalyst effect from EAFS in contact with the salt. No discernible alterations were detected in the properties of either the solid materials or solar salt when combined.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • energy density
  • corrosion
  • ceramic
  • solidification
  • concentrating