Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rolston, Nicholas

  • Google
  • 9
  • 36
  • 45

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Strategies to improve the mechanical robustness of metal halide perovskite solar cells14citations
  • 2024Use of carbon electrodes to reduce mobile ion concentration and improve reliability of metal halide perovskite photovoltaics4citations
  • 2024Designing metal halide perovskite solar modules for thermomechanical reliability8citations
  • 2024Scalable and Quench-Free Processing of Metal Halide Perovskites in Ambient Conditions4citations
  • 2023Quantifying and Reducing Ion Migration in Metal Halide Perovskites through Control of Mobile Ions11citations
  • 2023Incorporation of functional polymers into metal halide perovskite thin-films: from interactions in solution to crystallization4citations
  • 2023Additive Engineering:A Route Towards Flexible and Robust Perovskite Solar Cellscitations
  • 2023Additive Engineering: A Route Towards Flexible and Robust Perovskite Solar Cellscitations
  • 2023Additive Engineeringcitations

Places of action

Chart of shared publication
Li, Muzhi
3 / 3 shared
Figueroa Morales, Carlos A.
1 / 1 shared
Bolink, Henk
1 / 45 shared
Johnson, Samuel
1 / 1 shared
Gil Escrig, Lidón
1 / 9 shared
Tippin, Favian
1 / 1 shared
Penukula, Saivineeth
1 / 1 shared
Khawaja, Kausar Ali
1 / 1 shared
Yan, Feng
1 / 9 shared
Rizzo, Aurora
2 / 38 shared
Ahmad, Muneeza
2 / 2 shared
Cartledge, Carsen
1 / 1 shared
Mahaffey, Mason
1 / 1 shared
Giuri, Antonella
2 / 24 shared
Torrejon, Rodrigo Estrada
1 / 1 shared
Colella, Silvia
1 / 29 shared
Esposito Corcione, Carola
1 / 36 shared
Vanni, Nadir
1 / 3 shared
Listorti, Andrea
1 / 32 shared
Dauskardt, Reinhold H.
3 / 8 shared
Holappa, V.
3 / 3 shared
Corcione, C. Esposito
2 / 7 shared
Bisconti, F.
3 / 6 shared
Biagini, P.
3 / 6 shared
Po, R.
3 / 7 shared
Colella, S.
3 / 12 shared
Suhonen, R.
2 / 3 shared
Giuri, A.
3 / 13 shared
Listorti, A.
3 / 14 shared
Rizzo, A.
3 / 24 shared
Kraft, T. M.
2 / 3 shared
Ylikunnari, M.
2 / 4 shared
Esposito Corcione, C.
1 / 4 shared
Suhonen, Riikka
1 / 11 shared
Ylikunnari, Mari
1 / 6 shared
Kraft, Thomas M.
1 / 7 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Li, Muzhi
  • Figueroa Morales, Carlos A.
  • Bolink, Henk
  • Johnson, Samuel
  • Gil Escrig, Lidón
  • Tippin, Favian
  • Penukula, Saivineeth
  • Khawaja, Kausar Ali
  • Yan, Feng
  • Rizzo, Aurora
  • Ahmad, Muneeza
  • Cartledge, Carsen
  • Mahaffey, Mason
  • Giuri, Antonella
  • Torrejon, Rodrigo Estrada
  • Colella, Silvia
  • Esposito Corcione, Carola
  • Vanni, Nadir
  • Listorti, Andrea
  • Dauskardt, Reinhold H.
  • Holappa, V.
  • Corcione, C. Esposito
  • Bisconti, F.
  • Biagini, P.
  • Po, R.
  • Colella, S.
  • Suhonen, R.
  • Giuri, A.
  • Listorti, A.
  • Rizzo, A.
  • Kraft, T. M.
  • Ylikunnari, M.
  • Esposito Corcione, C.
  • Suhonen, Riikka
  • Ylikunnari, Mari
  • Kraft, Thomas M.
OrganizationsLocationPeople

article

Scalable and Quench-Free Processing of Metal Halide Perovskites in Ambient Conditions

  • Rizzo, Aurora
  • Li, Muzhi
  • Ahmad, Muneeza
  • Cartledge, Carsen
  • Mahaffey, Mason
  • Giuri, Antonella
  • Rolston, Nicholas
Abstract

<jats:p>With the rise of global warming and the growing energy crisis, scientists have pivoted from typical resources to look for new materials and technologies. Perovskite materials hold the potential for making high-efficiency, low-cost solar cells through solution processing of Earth-abundant materials; however, scalability, stability, and durability remain key challenges. In order to transition from small-scale processing in inert environments to higher throughput processing in ambient conditions, the fundamentals of perovskite crystallization must be understood. Classical nucleation theory, the LaMer relation, and nonclassical crystallization considerations are discussed to provide a mechanism by which a gellan gum (GG) additive—a nontoxic polymeric saccharide—has enabled researchers to produce quality halide perovskite thin-film blade coated in ambient conditions without a quench step. Furthermore, we report on the improved stability and durability properties inherent to these films, which feature improved morphologies and optoelectronic properties compared to films spin-coated in a glovebox with antisolvent. We tune the amount of GG in the perovskite precursor and study the interplay between GG concentration and processability, morphological control, and increased stability under humidity, heat, and mechanical testing. The simplicity of this approach and insensitivity to environmental conditions enable a wide process window for the production of low-defect, mechanically robust, and operationally stable perovskites with fracture energies among the highest obtained for perovskites.</jats:p>

Topics
  • perovskite
  • theory
  • defect
  • durability
  • crystallization
  • solution processing