Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nabok, Alexei

  • Google
  • 1
  • 4
  • 1

Sheffield Hallam University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Growth and Characterization of p-Type and n-Type Sb2Se3 for Use in Thin-Film Photovoltaic Solar Cell Devices1citations

Places of action

Chart of shared publication
Purandare, Yashodhan
1 / 20 shared
Alam, Ashfaque E.
1 / 1 shared
Bilya, Musa Abubakar
1 / 1 shared
Dharmadasa, I. M.
1 / 3 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Purandare, Yashodhan
  • Alam, Ashfaque E.
  • Bilya, Musa Abubakar
  • Dharmadasa, I. M.
OrganizationsLocationPeople

article

Growth and Characterization of p-Type and n-Type Sb2Se3 for Use in Thin-Film Photovoltaic Solar Cell Devices

  • Purandare, Yashodhan
  • Nabok, Alexei
  • Alam, Ashfaque E.
  • Bilya, Musa Abubakar
  • Dharmadasa, I. M.
Abstract

In this study, a two-electrode electrodeposition technique was employed to grow thin films of antimony selenide (Sb2Se3) on glass/fluorine-doped tin oxide (FTO) substrates. The highest quality thin films were consistently obtained within the range of 1600 mV to 1950 mV. Subsequent electrodeposition experiments were conducted at discrete voltages to produce various layers of thin films. Photoelectrochemical cell (PEC) measurements were performed to characterize the semiconductor material layers, leading to the identification of both p-Type and n-Type conductivity types. Optical absorption spectroscopic analysis revealed energy bandgap values ranging from 1.10 eV to 1.90 eV for AD-deposited Sb2Se3 samples and 1.08 eV to 1.68 eV for heat-treated Sb2Se3 samples, confirming the semiconducting nature of the Sb2Se3 material. Additionally, other characterization techniques, including X-ray diffraction analysis, reveal that the AD-deposited layers are almost amorphous, and heat treatment shows that the material is within the orthorhombic crystalline system. Heat-treated layers grown at ~1740 mV showed highly crystalline material with a bandgap nearing the bulk bandgap of Sb2Se3. Raman spectroscopy identified vibrational modes specific to the Sb2Se3 phase, further confirming its crystallinity. To explore the thin-film morphology, Scanning Electron Microscopy (SEM) was employed, revealing uniformly deposited material composed of grains of varying sizes at different voltages. Energy Dispersive X-ray analysis (EDX) confirmed the presence of antimony and selenium in the material layers.

Topics
  • impedance spectroscopy
  • amorphous
  • grain
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • experiment
  • thin film
  • glass
  • semiconductor
  • glass
  • Energy-dispersive X-ray spectroscopy
  • tin
  • electrodeposition
  • Raman spectroscopy
  • crystallinity
  • Antimony