Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Koo, Wai Yee

  • Google
  • 1
  • 6
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Effects of Catalyst Ink Storage on Polymer Electrolyte Fuel Cells2citations

Places of action

Chart of shared publication
Hacker, Viktor
1 / 37 shared
Blaschke, Fabio
1 / 5 shared
Roschger, Michaela
1 / 9 shared
Kircher, Mario
1 / 1 shared
Grandi, Maximilian
1 / 6 shared
Bodner, Merit
1 / 15 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Hacker, Viktor
  • Blaschke, Fabio
  • Roschger, Michaela
  • Kircher, Mario
  • Grandi, Maximilian
  • Bodner, Merit
OrganizationsLocationPeople

article

Effects of Catalyst Ink Storage on Polymer Electrolyte Fuel Cells

  • Hacker, Viktor
  • Blaschke, Fabio
  • Roschger, Michaela
  • Kircher, Mario
  • Koo, Wai Yee
  • Grandi, Maximilian
  • Bodner, Merit
Abstract

The shelf-life of catalyst ink for fabricating polymer electrolyte fuel cells (PEFCs) is relevant for large-scale manufacturing with unforeseen production stops. In this study, the storage effects on the physicochemical characteristics of catalyst ink (Pt/C, Nafion, 2-propanol, water) and subsequently manufactured catalyst layers are investigated. Sedimentation analysis showed that catalyst particles are not fully stabilized by charge interaction induced by Nafion. Acetone was found to be an oxidation product, even in freshly prepared ink with platinum catalyzing the reaction. Rotating disk electrode analysis revealed that the electrochemically active surface area is, overall, minimally increased by storage, and the selectivity towards water formation (4-electron pathway) is unharmed within the first 48 h of storage. MEAs prepared from stored ink reach almost the same current density level after conditioning via potential cycling. The open-circuit voltage (OCV) increases due to increased catalyst availability. Scanning electron microscopy and mercury intrusion porosimetry showed that with increasing acetone content, the pore structure becomes finer, with a higher specific surface area. Electrochemical impedance spectroscopy revealed that this results in a more hindered mass transfer but lowered charge transfer resistance. The MEA with the highest OCV and power output and the lowest overall cell resistance was fabricated from catalyst ink stored for a duration of four weeks.

Topics
  • density
  • impedance spectroscopy
  • pore
  • surface
  • polymer
  • scanning electron microscopy
  • Platinum
  • current density
  • porosimetry
  • Mercury