People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vryonis, Orestis
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Impact of particle thermal treatment on dielectric properties of core-shell filled epoxy nano-composites
- 2024Development, dielectric response, and functionality of ZnTiO 3 /BaTiO 3 /epoxy resin hybrid nanocompositescitations
- 2023Thermo-oxidative aging effect on charge transport in polypropylene/ultra-high molecular weight polyethylene nanocompositescitations
- 2022Flexible polymer-based nanodielectrics reinforced with electrospun composite nanofibers for capacitive energy storagecitations
- 2022Numerical simulation of lightning strike damage to wind turbine blades and validation against conducted current test datacitations
- 2022Dynamic mechanical response in epoxy nanocomposites incorporating various nano-silica architectures
- 2022Dielectric response in epoxy nanocomposites incorporating various nano-silica architecturescitations
- 2022Molecular dynamics of epoxy nanocomposites filled with core–shell and hollow nanosilica architecturescitations
- 2021Stoichiometry and molecular dynamics of anhydride-cured epoxy resin incorporating octa-glycidyl POSS Co-Monomercitations
- 2021Lightning Protection of Wind Turbine Blades – How Supersizing Has Created New Challenges for Nanodielectrics Researchcitations
- 2020Effect of surfactant molecular structure on the electrical and thermal performance of epoxy/functionalized‐graphene nanocompositescitations
- 2019Structure/property relations of graphene oxide/epoxy nanocomposites: tailoring the particle surface chemistry for enhanced electrical and thermal performance
- 2019Understanding the cross-linking reactions in highly oxidized graphene/epoxy nanocomposite systemscitations
- 2019Structural and chemical comparison between moderately oxygenated and edge oxygenated graphene: mechanical, electrical and thermal performance of the epoxy nanocompositescitations
- 2018On the effect of solvent method processing on epoxy resin systemscitations
- 2018On the effect of solvent method processing on epoxy resin systems: a molecular dynamics studycitations
- 2017The Influence of Graphene Oxide on the electrical conduction in unidirectional CFRP laminates for wind turbine blade applications
- 2017Reducing the electrical anisotropy in unidirectional CFRP materials for wind turbine blade applications
- 2017Reducing the electrical anisotropy in unidirectional CFRP materials for wind turbine blade applications
Places of action
Organizations | Location | People |
---|
article
Thermo-oxidative aging effect on charge transport in polypropylene/ultra-high molecular weight polyethylene nanocomposites
Abstract
This study investigates the impact of magnesium oxide (MgO) nanoparticles on the thermo-oxidative aging behavior of blends of polypropylene (PP) and ultra-high molecular weight polyethylene (UHMWPE). The samples, both unfilled and filled with MgO, were aged at 120 °C for varying durations of up to 672 h. The observed structural changes are not monotonic; recrystallization leads to the increased crystallinity and melting temperature of UHMWPE until 336 h. Beyond this, the consumption of the antioxidant leads to chain scission which, in turn, results in decreased crystallinity. The presence of carbonyl groups indicates chemical changes and, as such, the carbonyl index is used as an indicator of aging, with subsequent changes to charge transport. During thermal aging, the interaction between PP and UHMWPE chains at interfaces is enhanced, leading to improved compatibility and the emergence of a new single crystallization peak in PP/UHMWPE blends. Although MgO does not show evidence of elevating the crystallization temperature, implying the absence of enhanced nucleation, it acts as a compatibilizer, improving interfacial interaction compared with the unfilled blend counterparts. MgO hinders the breakage of molecular structures and impedes the diffusion of oxygen. This, in turn, results in nanocomposites filled with MgO having reduced their charge accumulation and conductivity, thus delaying the aging process compared to PP/UHMWPE blends without nanofiller.