Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hosseinnia, S. Hassan

  • Google
  • 4
  • 5
  • 63

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Remnant Magnetisation State Control for Positioning of a Hybrid Tunable Magnet Actuatorcitations
  • 2020Comparison of dynamic characteristics of active sensing methods of Ionic Polymer Metal Composite (IPMC)citations
  • 2019Sensing and self-sensing actuation methods for Ionic Polymer–Metal Composite (IPMC)58citations
  • 2018IPMC Kirigami5citations

Places of action

Chart of shared publication
Ronaes, E. P.
1 / 1 shared
Hunt, Andres
4 / 5 shared
Esfahani, Peyman Mohajerin
1 / 1 shared
Freriks, Mirte
1 / 2 shared
Sasso, Luigi
1 / 9 shared
Chart of publication period
2023
2020
2019
2018

Co-Authors (by relevance)

  • Ronaes, E. P.
  • Hunt, Andres
  • Esfahani, Peyman Mohajerin
  • Freriks, Mirte
  • Sasso, Luigi
OrganizationsLocationPeople

article

Remnant Magnetisation State Control for Positioning of a Hybrid Tunable Magnet Actuator

  • Ronaes, E. P.
  • Hosseinnia, S. Hassan
  • Hunt, Andres
Abstract

The recent development of a hybrid tunable magnet actuator proposes to eliminate Joule heating when maintaining a force or position offset. By controlling the remnant magnetic flux in an AlNiCo magnet within the actuator, the actuation force can be linearly varied and maintained. While a method for tuning the magnetisation state of the magnet with minimal magnetic field changes has been demonstrated previously, the method is inefficient due to its slow tuning rate, which hinders its use in controlling the actuator’s position. This paper presents a novel method of magnetisation state tuning with a fast tuning rate and validates its effectiveness for controlling the position of a short-stroke linear actuator. This tuning method is implemented and verified for changing the flux density of an AlNiCo magnet in the range of ±1.2 T, with a root-mean-square error (RMSE) of 7.2 mT. An accurate estimation of the magnetisation state is furthermore achieved during positioning, guided by the design and experimental validation of a lumped parameter model, allowing the position to be controlled with an RMSE of 4.0 µm in a range of −157 to 320 µm.

Topics
  • density
  • impedance spectroscopy