People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Binetti, Simona
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Investigating strategies for high-efficiency flexible kesterite solar cells from solution-based synthesis
- 2024Exploring strategies for high-efficiency flexible kesterite solar cells from solution process
- 2024Bismuth-Based Perovskite Derivates with Thermal Voltage Exceeding 40 mV/K
- 2023Effect of the ZnSnO/AZO Interface on the Charge Extraction in Cd-Free Kesterite Solar Cellscitations
- 2023Chalcogenide-based hole transport material for stable perovskite solar cells
- 2022Kesterite thin-films deposited by sol-gel techniques with tunable bandgap as absorbers for photovoltaic applications
- 2021Quasi-Zero Dimensional Halide Perovskite Derivates: Synthesis, Status, and Opportunitycitations
- 2019Annealing of Boron-Doped Hydrogenated Crystalline Silicon Grown at Low Temperature by PECVDcitations
- 2019Annealing of Boron-Doped Hydrogenated Crystalline Silicon Grown at Low Temperature by PECVDcitations
- 2018In situ gel formation of high quality kesterite thin films
Places of action
Organizations | Location | People |
---|
article
Effect of the ZnSnO/AZO Interface on the Charge Extraction in Cd-Free Kesterite Solar Cells
Abstract
<jats:p>Cu2ZnSnS4 (CZTS) is a promising absorber material to produce thin film solar cells thanks to its high absorption coefficient, low cost and low toxicity. CdS is commonly used as a buffer layer for CZTS solar cells but, beyond its toxicity, it has a nonoptimal band alignment with CZTS. ZnxSn1−xO (ZTO), based on earth-abundant and nontoxic elements and with a large and tunable band gap, is a suitable alternative buffer layer. In this paper, the atomic layer deposition (ALD) of ZTO was employed by testing different compositions and thicknesses. ALD not only leads to very compact and homogenous ZTO layers (enabling tuning the stoichiometry of the ZTO so prepared) but also makes the i-ZnO layer (usually sandwiched between the buffer layer and the transparent contact) redundant and detrimental. Through SCAPS simulation and impedance measurements, the ZnSnO/AZO interface impact on the Cd-free kesterite solar cells’ performances has been investigated, highlighting its leading role in achieving an effective charge extraction and the detrimental effect of the i-ZnO layer. With this approach, a solar cell based on an architecture simpler and more eco-friendly than the conventional one has been produced with comparable efficiencies.</jats:p>