Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bhusal, Sandip

  • Google
  • 1
  • 6
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Effect of Oxygen Vacancy on the Crystallinity and Optical Band Gap in Tin Oxide Thin Film26citations

Places of action

Chart of shared publication
Basnet, Bijaya
1 / 1 shared
Pandey, Manoj
1 / 2 shared
Kafle, Bhim
1 / 1 shared
Tiwari, Dr Santosh K.
1 / 1 shared
Budhathoki, Biplab
1 / 1 shared
Parajuli, Kshama
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Basnet, Bijaya
  • Pandey, Manoj
  • Kafle, Bhim
  • Tiwari, Dr Santosh K.
  • Budhathoki, Biplab
  • Parajuli, Kshama
OrganizationsLocationPeople

article

Effect of Oxygen Vacancy on the Crystallinity and Optical Band Gap in Tin Oxide Thin Film

  • Basnet, Bijaya
  • Pandey, Manoj
  • Kafle, Bhim
  • Tiwari, Dr Santosh K.
  • Budhathoki, Biplab
  • Parajuli, Kshama
  • Bhusal, Sandip
Abstract

<jats:p>Herein, we have prepared tin oxide (SnO2) nanoparticles (NPs), through a co-precipitation method, using SnCl2·2H2O dissolved in distilled water (DW) as a precursor. Then, the prepared NPs were heat treated in a muffle furnace, as a function of temperature, under an open atmosphere. The prepared SnO2 NPs were then re-dispersed in DW, followed by spray casting on a glass substrate, for preparing SnO2 thin films. The average thickness of the fabricated SnO2 thin films was 2.76 µm. We demonstrated a very clear variation in the structural, compositional, and morphological features of the different films (in particular, variation of the density of oxygen vacancies), which altered their electrical and optical properties. Raising the calcination temperature of the SnO2 thin films, from 250 °C to 650 °C, led to a monotonic reduction in the crystallite size, from 10.4 nm to 6.7 nm, and a decrease in the O/Sn ratio, from 5.60 to 4.79. A 14.5% decrease in the O/Sn ratio resulted in a decrease in the crystallite size by 3.7 nm (i.e., a 35.3% decrease in the NP size), and a decrease in the band gap of 0.11 eV. The lowering of the band gap, along with an increase in the oxygen vacancies in the films, accords well with previous studies. Besides, as the calcination temperature was raised, the refractive index and absorption coefficient values were also found to notably increase. Very interestingly, by simply altering the calcination temperature, we were able to produce SnO2 thin films with optical band gaps nearly equal to the fundamental band gap (2.96 eV), even though many earlier experimental studies had reported considerably greater values (3.36–4.24 eV). SnO2 thin films with lower oxygen vacancies exhibited relatively higher band gaps, which is likely to be favorable for the desired electron transport layer in perovskite solar cells.</jats:p>

Topics
  • nanoparticle
  • density
  • perovskite
  • impedance spectroscopy
  • thin film
  • Oxygen
  • glass
  • glass
  • precipitation
  • casting
  • tin
  • crystallinity
  • vacancy