Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jaber, M. M.

  • Google
  • 1
  • 7
  • 40

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022A Comprehensive Review on Current Performance, Challenges and Progress in Thin-Film Solar Cells40citations

Places of action

Chart of shared publication
Memon, Saim
1 / 11 shared
Kaliyannan, G. V.
1 / 1 shared
Rathanasamy, R.
1 / 1 shared
Sivaraj, S.
1 / 1 shared
Said, Z.
1 / 1 shared
Alrubaie, A. J.
1 / 1 shared
Panchal, H.
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Memon, Saim
  • Kaliyannan, G. V.
  • Rathanasamy, R.
  • Sivaraj, S.
  • Said, Z.
  • Alrubaie, A. J.
  • Panchal, H.
OrganizationsLocationPeople

article

A Comprehensive Review on Current Performance, Challenges and Progress in Thin-Film Solar Cells

  • Memon, Saim
  • Kaliyannan, G. V.
  • Rathanasamy, R.
  • Sivaraj, S.
  • Said, Z.
  • Jaber, M. M.
  • Alrubaie, A. J.
  • Panchal, H.
Abstract

Due to the recent surge in silicon demand for solar modules, thin-film photovoltaic (PV) modules have a potential to penetrate the market in significant numbers. As an alternate candidate, thin film technologies in PVs have the ability to achieve better performance. The competing thin-film PV technologies have the flexibility to adapt to any sort of curvature compared to rigid solar cells (SCs). Due to the peculiar characteristics of newer solar materials, stability issues, reflection losses, advancements in electrode materials and dopant materials with a photoactive layer are current challenges driving the industrial-academic voyage of development of solar materials for the betterment of Photo-conversion Efficiency (PCE). Based on the photoactive materials used over time, SC evolution was broadly classified into first, second and third generation SCs. In this review, the basic working mechanisms, various materials used, drawbacks and stability issues of different SCs are discussed extensively. Thin film SCs tend to absorb certain elastic deformations due to their flexible nature and to a certain extent. According to the NREL efficiency chart, multi-junctional SCs exhibit enhanced efficiency as compared to the other SCs. Among the third-generation SCs, the perovskite/Si tandem architecture shows a maximum efficiency of approximately 29%. Thin film flexible SCs find application in various sectors such as automobile, defense and/or energy storage devices

Topics
  • perovskite
  • thin film
  • Silicon