Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Napruszewska, Bogna Daria

  • Google
  • 1
  • 7
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021The Influence of Microstructured Charcoal Additive on ANFO’s Properties12citations

Places of action

Chart of shared publication
Atlagić, Suzana Gotovac
1 / 1 shared
Dworzak, Michał
1 / 1 shared
Pytlik, Mateusz
1 / 1 shared
Twardosz, Michał
1 / 1 shared
Kuterasiński, Łukasz
1 / 3 shared
Nowak-Senderowska, Dagmara
1 / 1 shared
Biessikirski, Andrzej
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Atlagić, Suzana Gotovac
  • Dworzak, Michał
  • Pytlik, Mateusz
  • Twardosz, Michał
  • Kuterasiński, Łukasz
  • Nowak-Senderowska, Dagmara
  • Biessikirski, Andrzej
OrganizationsLocationPeople

article

The Influence of Microstructured Charcoal Additive on ANFO’s Properties

  • Atlagić, Suzana Gotovac
  • Dworzak, Michał
  • Napruszewska, Bogna Daria
  • Pytlik, Mateusz
  • Twardosz, Michał
  • Kuterasiński, Łukasz
  • Nowak-Senderowska, Dagmara
  • Biessikirski, Andrzej
Abstract

<jats:p>The verification of the blasting parameters of Ammonium Nitrate Fuel Oil (ANFO) with the addition of microstructured charcoal (MC) produced by destructive wood distillation was performed. Additional investigation of specific surface and pore distribution by the nitrogen adsorption of the two granulations of MC was also carried out. High-resolution scanning electron microscopy was used for morphology evaluation and revealed smoothening of the initially developed external surface of carbon with intensive milling. In addition, the analysis of the thermal properties of the studied samples (TG/DSC) indicated that the size of the microstructured charcoal additives influenced the decomposition temperature of the prepared materials. The explosives containing microstructured charcoal grains of −90 μm underwent decomposition at lower temperatures in comparison with those containing higher sizes of microstructure charcoal grains (−1.18 mm), for which the decomposition temperature reached 292 °C. The obtained results of blasting parameters compared to the results derived from thermodynamic simulation showed the non-ideal character of the explosives (much lower values of blasting parameters than in established thermodynamic models). It was indicated that higher velocities of detonations (VOD) were obtained for non-ideal explosives where finer MC grains were added. Blasting tests confirmed that the studied type of MC can be applied as an additive to the ANFO.</jats:p>

Topics
  • pore
  • morphology
  • surface
  • Carbon
  • grain
  • scanning electron microscopy
  • simulation
  • grinding
  • milling
  • Nitrogen
  • thermogravimetry
  • differential scanning calorimetry
  • wood
  • decomposition
  • distillation