People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tesfaye, Fiseha
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Graphite recovery from waste Li-ion battery black mass for direct re-usecitations
- 2023Thermodynamic Model for High-Temperature Corrosion Applications: The (NaCl + Na2CO3 + Na2SO4 + Na2S2O7 + Na2CrO4 + Na2Cr2O7 + Na2MoO4 + Na2Mo2O7 + Na2O + KCl + K2CO3 + K2SO4 + K2S2O7 + K2CrO4 + K2Cr2O7 + K2MoO4 + K2Mo2O7 + K2O) System
- 2023Investigation of the Optimal Recovery of Sn, Pb, Cu, and Ni from E-waste Generated Type of Slags in the Black Copper Processing Route
- 2023Critical Evaluation and Calorimetric Study of the Thermodynamic Properties of Na2CrO4, K2CrO4, Na2MoO4, K2MoO4, Na2WO4, and K2WO4citations
- 2022Amino Acids Reduce Mild Steel Corrosion in Used Cooking Oilscitations
- 2022Metal Rod Surfaces after Exposure to Used Cooking Oilscitations
- 2022Experimental Thermodynamic Characterization of the Chalcopyrite-Based Compounds in the Ag–In–Te System for a Potential Thermoelectric Applicationcitations
- 2021Materials Processing Fundamentals 2021citations
- 2021Effect of Storage Time on the Physicochemical Properties of Waste Fish Oils and Used Cooking Vegetable Oilscitations
- 2020Thermodynamic Modeling of Sustainable Non-ferrous Metals Production: Part Icitations
- 2020Cleaner Manufacturing of Critical Metalscitations
- 2020Solid-state electrochemical synthesis and thermodynamic properties of selected compounds in the Ag–Fe–Pb–Se systemcitations
- 2019Factors affecting the corrosive behavior of used cooking oils and a non-edible fish oil that are in contact with ferrous metalscitations
- 2018A Sustainable Methodology for Recycling Electric Arc Furnace Dustcitations
- 2018Experimental investigation and thermodynamic re-assessment of the ternary copper-nickel-lead systemcitations
- 2018Thermodynamic Investigation of Selected Metal Sulfates for Controlling Fouling and Slagging During Combustion
- 2017Thermal stabilities and properties of equilibrium phases in the Pt-Te-O systemcitations
- 2017The Thermodynamics of Slag Forming Inorganic Phases in Biomass Combustion Processescitations
- 2016Thermochemical properties of selected ternary phases in the Ag–Bi–S systemcitations
- 2015Electrochemical study on the Ag-Sb system by advanced experimental methodcitations
- 2015Experimental thermodynamic study on the Ag-Sb system at elevated temperatures
- 2014Thermodynamic properties of equilibrium phases in the Ag-Cu-S system below 500 K:Experimental studycitations
- 2013Experimental thermodynamic study of intermetallic phases in the binary Ag-Te system by an improved EMF methodcitations
- 2011Thermodynamic investigation of intermetallic phases in the binary system Ag-Te
- 2010Sulfide Mineralogy - Literature Review
- 2010Densities of Molten and Solid Alloys of (Fe, Cu, Ni, Co)-S at Elevated Temperatures - Literature Review and Analysis
Places of action
Organizations | Location | People |
---|
article
Effect of Storage Time on the Physicochemical Properties of Waste Fish Oils and Used Cooking Vegetable Oils
Abstract
Waste fish oils (FOs) and used cooking vegetable oils (UCOs) are increasingly becoming alterna-tive renewable fuels. However, different physicochemical aspects of these renewable fuels, in-cluding the effect of storage, are not well-known. In this work, the effect of the storage period on physicochemical properties of selected samples of FOs and UCOs was investigated. The bio-oils were stored at 4 °C for up to five years before each experimentation. The chemical properties were characterized using capillary gas chromatography with flame ionization detection (GC-FID) and high-performance size exclusion chromatography including an evaporative light scattering de-tector (HPSEC-ELSD). Water contents and acid numbers of the bio-oils were determined using the Karl Fischer (KF) titration and the ASTM D 664 methods. Furthermore, the average heating values and surface tension of the bio-oils were determined. According to the results obtained, for all bio-oil types, the concentrations of polymerized triglycerides, diglycerides, and fatty acids and monoglycerides had increased during the storage periods. The physical properties of the bio-oils also showed a small variation as a function of the storage period. The overall results observed indicate that the deterioration of the physicochemical properties of bio-oils can be controlled through storage in dark, dry, and cold conditions.