Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nyamsi, Serge Nyallang

  • Google
  • 2
  • 6
  • 59

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Hydrogen storage behaviours of high entropy alloys: A Review43citations
  • 2020Optimal Design of Combined Two-Tank Latent and Metal Hydrides-Based Thermochemical Heat Storage Systems for High-Temperature Waste Heat Recovery16citations

Places of action

Chart of shared publication
Davids, Moegamat Wafeeq
1 / 1 shared
Yartys, Volodymyr
1 / 14 shared
Lototskyy, Mykhaylo V.
1 / 6 shared
Somo, Thabang R.
1 / 1 shared
Tolj, Ivan
1 / 1 shared
Lototskyy, Mykhaylo
1 / 2 shared
Chart of publication period
2023
2020

Co-Authors (by relevance)

  • Davids, Moegamat Wafeeq
  • Yartys, Volodymyr
  • Lototskyy, Mykhaylo V.
  • Somo, Thabang R.
  • Tolj, Ivan
  • Lototskyy, Mykhaylo
OrganizationsLocationPeople

article

Optimal Design of Combined Two-Tank Latent and Metal Hydrides-Based Thermochemical Heat Storage Systems for High-Temperature Waste Heat Recovery

  • Tolj, Ivan
  • Nyamsi, Serge Nyallang
  • Lototskyy, Mykhaylo
Abstract

<jats:p>The integration of thermal energy storage systems (TES) in waste-heat recovery applications shows great potential for energy efficiency improvement. In this study, a 2D mathematical model is formulated to analyze the performance of a two-tank thermochemical heat storage system using metal hydrides pair (Mg2Ni/LaNi5), for high-temperature waste heat recovery. Moreover, the system integrates a phase change material (PCM) to store and restore the heat of reaction of LaNi5. The effects of key properties of the PCM on the dynamics of the heat storage system were analyzed. Then, the TES was optimized using a genetic algorithm-based multi-objective optimization tool (NSGA-II), to maximize the power density, the energy density and storage efficiency simultaneously. The results indicate that the melting point Tm and the effective thermal conductivity of the PCM greatly affect the energy storage density and power output. For the range of melting point Tm = 30–50 °C used in this study, it was shown that a PCM with Tm = 47–49 °C leads to a maximum heat storage performance. Indeed, at that melting point narrow range, the thermodynamic driving force of reaction between metal hydrides during the heat charging and discharging processes is almost equal. The increase in the effective thermal conductivity by the addition of graphite brings about a tradeoff between increasing power output and decreasing the energy storage density. Finally, the hysteresis behavior (the difference between the melting and freezing point) only negatively impacts energy storage and power density during the heat discharging process by up to 9%. This study paves the way for the selection of PCMs for such combined thermochemical-latent heat storage systems.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • energy density
  • phase
  • thermal conductivity