Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dawoud, Belal

  • Google
  • 2
  • 6
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Unified Methodology to Identify the Potential Application of Seasonal Sorption Storage Technology14citations
  • 2017Susceptibility to corrosion of aluminium alloy components in ethanol adsorption chiller9citations

Places of action

Chart of shared publication
Frazzica, Andrea
2 / 4 shared
Brancato, Vincenza
1 / 12 shared
Proverbio, Edoardo
1 / 38 shared
Calabrese, Luigi
1 / 48 shared
Bonaccorsi, Lucio
1 / 4 shared
Capri, Angela
1 / 5 shared
Chart of publication period
2020
2017

Co-Authors (by relevance)

  • Frazzica, Andrea
  • Brancato, Vincenza
  • Proverbio, Edoardo
  • Calabrese, Luigi
  • Bonaccorsi, Lucio
  • Capri, Angela
OrganizationsLocationPeople

article

Unified Methodology to Identify the Potential Application of Seasonal Sorption Storage Technology

  • Frazzica, Andrea
  • Brancato, Vincenza
  • Dawoud, Belal
Abstract

<jats:p>In this study, the definition of a new methodology for a preliminary evaluation of the working boundary conditions under which a seasonal thermal energy storage (STES) system operates is described. The approach starts by considering the building features as well as the reference heating system in terms of solar thermal collectors’ technology, ambient heat sinks/source, and space heating distribution systems employed. Furthermore, it is based on a deep climatic analysis of the place where the STES needs to be installed, to identify both winter and summer operating conditions. In particular, the STES energy density is evaluated considering different space heating demands covered by the STES (ranging from 10% up to 60%). The obtained results demonstrate that this approach allows for the careful estimation of the achievable STES density, which is varies significantly both with the space heating coverage guaranteed by the STES as well as with the ambient heat source/sink that is employed in the system. This confirms the need for careful preliminary analysis to avoid the overestimation of the STES material volume. The proposed approach was then applied for different climatic conditions (e.g., Germany and Sweden) and the volume of one of the most attractive composite sorbent materials reported in the literature, i.e., multi-wall carbon nanotubes (MWCNT)-LiCl, using water as the working fluid, needed for covering the variable space heating demand in a Nearly Zero Energy Building (NZEB) was calculated. In the case of Swedish buildings, it ranges from about 3.5 m3 when 10% of the space heating demand is provided by the STES, up to 11.1 m3 when 30% of the space heating demand is provided by the STES.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • Carbon
  • energy density
  • nanotube
  • composite