People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kwade, Arno
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Opportunities and Challenges of Calendering Sulfide‐Based Separators for Solid‐State Batteriescitations
- 2023Impact of Silicon Content and Particle Size in Lithium-Ion Battery Anodes on Particulate Properties and Electrochemical Performancecitations
- 2023Effective mechanochemical synthesis of sulfide solid electrolyte Li3PS4 in a high energy ball mill by process investigationcitations
- 2023Model Development for Binder Migration within Lithium-Ion Battery Electrodes during the Drying Processcitations
- 2023Impact of Spheroidization of Natural Graphite on Fast-Charging Capability of Anodes for LIBcitations
- 2023Selective Paste Intrusion: Integration of Reinforcement by WAAM — Concept and Overview of the Current Researchcitations
- 2022Top-Down Formulation of Goethite Nanosuspensions for the Production of Transparent, Inorganic Glass Coatingscitations
- 2022Calendering of Silicon-Containing Electrodes and Their Influence on the Mechanical and Electrochemical Propertiescitations
- 2022Digitalization Platform for Mechanistic Modeling of Battery Cell Productioncitations
- 2021Nanoparticle Additivation Effects on Laser Powder Bed Fusion of Metals and Polymers: A Theoretical Concept for an Inter-Laboratory Study Design All Along the Process Chain, Including Research Data Managementcitations
- 2021Powder properties and flowability measurements of tailored nanocomposites for powder bed fusion applicationscitations
- 2020Solvent-Free Manufacturing of Electrodes for Lithium-Ion Batteries via Electrostatic Coatingcitations
- 2020Morphological and physiological characterization of filamentous Lentzea aerocolonigenes: Comparison of biopellets by microscopy and flow cytometrycitations
- 2019Influence of Powder Deposition on Powder Bed and Specimen Propertiescitations
- 2019Solvent-Free Manufacturing of Electrodes for Lithium-Ion Batteries via Electrostatic Coatingcitations
- 2018Multifunctional Composites for Future Energy Storage in Aerospace Structurescitations
- 2018Effect of particle size and cohesion on powder yielding and flowcitations
- 2018Process and Formulation Strategies to Improve Adhesion of Nanoparticulate Coatings on Stainless Steelcitations
- 2018Investigation of Nanoporous Superalloy Membranes for the Production of Nanoemulsionscitations
- 2018Exploring the Effect of Increased Energy Density on the Environmental Impacts of Traction Batteries: A Comparison of Energy Optimized Lithium-Ion and Lithium-Sulfur Batteries for Mobility Applicationscitations
Places of action
Organizations | Location | People |
---|
article
Multifunctional Composites for Future Energy Storage in Aerospace Structures
Abstract
Multifunctionalization of fiber-reinforced composites, especially by adding energy storage capabilities, is a promising approach to realize lightweight structural energy storages for future transport vehicles. Compared to conventional energy storage systems, energy density can be increased by reducing parasitic masses of non-energy-storing components and by benefitting from the composite meso- and microarchitectures. In this paper, the most relevant existing approaches towards multifunctional energy storages are reviewed and subdivided into five groups by distinguishing their degree of integration and their scale of multifunctionalization. By introducing a modified range equation for battery-powered electric aircrafts, possible range extensions enabled by multifunctionalization are estimated. Furthermore, general and aerospace specific potentials of multifunctional energy storages are discussed. Representing an intermediate degree of structural integration, experimental results for a multifunctional energy-storing glass fiber-reinforced composite based on the ceramic electrolyte LATP are presented. Cyclic voltammetry tests are used to characterize the double-layer behavior combined with galvanostatic charge–discharge measurements for capacitance calculation. The capacitance is observed to be unchanged after 1500 charge–discharge cycles revealing a promising potential for future applications. Furthermore, the mechanical properties are assessed by means of four-point bending and tensile tests. Additionally, the influence of mechanical loads on the electrical properties is also investigated, demonstrating the storage stability of the composites.