People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Seiler, Patrick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Antiviral Susceptibility of Highly Pathogenic Avian Influenza A(H5N1) Viruses Circulating Globally in 2022–2023citations
- 2020Electrical Material Properties of Carbon Reinforced Concretecitations
- 2019Dielectric Material Characterization for 5G Propagation Modellingcitations
- 2018Interconnect Technology Development for 180GHz Wireless mm-Wave System-in-Foil Transceiverscitations
Places of action
Organizations | Location | People |
---|
article
Electrical Material Properties of Carbon Reinforced Concrete
Abstract
<p>Carbon fiber reinforced concrete is poised to be the building material of the future. We present a study to quantify the influence of this novel reinforcement material on RF propagation in the range from 0.4 to 67 GHz. The measured attenuation effects of the reinforcement material are explained and quantified using a metallic wire screen model. It can be used to as a simple model of the material's influence in radio propagation scenarios. For reference and completeness, data on the complex dielectric permittivity of the investigated concrete brand is also included. The production process of the concrete samples used for the measurements is documented, facilitating comparability and reproducibility. Finally, implications for current and future radio communication applications are outlined.</p>