Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Drost, Andreas

  • Google
  • 1
  • 5
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Influence of flexibility of the interconnects on the dynamic bending reliability of flexible hybrid electronics12citations

Places of action

Chart of shared publication
Palavesam, Nagarajan
1 / 5 shared
Landesberger, Christof
1 / 9 shared
Kutter, Christoph
1 / 7 shared
Bock, Karlheinz
1 / 43 shared
Hell, Waltraud
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Palavesam, Nagarajan
  • Landesberger, Christof
  • Kutter, Christoph
  • Bock, Karlheinz
  • Hell, Waltraud
OrganizationsLocationPeople

article

Influence of flexibility of the interconnects on the dynamic bending reliability of flexible hybrid electronics

  • Palavesam, Nagarajan
  • Landesberger, Christof
  • Kutter, Christoph
  • Bock, Karlheinz
  • Hell, Waltraud
  • Drost, Andreas
Abstract

<p>The growing interest towards thinner and conformable electronic systems has attracted significant attention towards flexible hybrid electronics (FHE). Thin chip-foil packages fabricated by integrating ultra-thin monocrystalline silicon integrated circuits (ICs) on/in flexible foils have the potential to deliver high performance electrical functionalities at very low power requirements while being mechanically flexible. However, only very limited information is available regarding the fatigue or dynamic bending reliability of such chip-foil packages. This paper reports a series of experiments where the influence of the type of metal constituting the interconnects on the foil substrates on their dynamic bending reliability has been analyzed. The test results show that chip-foil packages with interconnects fabricated from a highly flexible metal like gold endure the repeated bending tests better than chip-foil packages with stiffer interconnects fabricated from copper or aluminum. We conclude that further analysis work in this field will lead to new technical concepts and designs for reliable foil based electronics.</p>

Topics
  • impedance spectroscopy
  • experiment
  • aluminium
  • gold
  • fatigue
  • copper
  • bending flexural test
  • Silicon
  • ion chromatography