People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tamm, Aile
University of Tartu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024ZIF-8 derived iron-, sulphur-, and nitrogen-doped catalysts for anionexchange membrane fuel cell applicationcitations
- 2023Ag Sputter-Deposited on MnO2-Carbon Nanotube Nanocomposites as Electrocatalysts for Oxygen Reduction Reaction in Alkaline Mediacitations
- 2023Electrospun Carbon Nanofibre‐Based Catalysts Prepared with Co and Fe Phthalocyanine for Oxygen Reduction in Acidic Mediumcitations
- 2022Bipolar Resistive Switching in Hafnium Oxide-Based Nanostructures with and without Nickel Nanoparticlescitations
- 2022Memory Effects in Nanolaminates of Hafnium and Iron Oxide Films Structured by Atomic Layer Depositioncitations
- 2021Optical and mechanical properties of nanolaminates of zirconium and hafnium oxides grown by atomic layer depositioncitations
- 2020Behavior of nanocomposite consisting of manganese ferrite particles and atomic layer deposited bismuth oxide chloride filmcitations
- 2019Magnetic and Electrical Performance of Atomic Layer Deposited Iron Erbium Oxide Thin Filmscitations
- 2018Properties of Atomic Layer Deposited Nanolaminates of Zirconium and Cobalt Oxidescitations
- 2018Atomic layer deposition and properties of ZrO2/Fe2O3 thin filmscitations
- 2017Luminescence properties of $mathrm{Er^{3+}}$ doped zirconia thin films and $mathrm{ZrO_2/Er_2O_3}$ nanolaminates grown by atomic layer depositioncitations
- 2015Mechanical properties of aluminum, zirconium, hafnium and tantalum oxides and their nanolaminates grown by atomic layer depositioncitations
- 2014Atomic layer deposition of Zr<scp>O</scp><sub>2</sub> for graphene‐based multilayer structures: <i>In situ</i> and <i>ex situ</i> characterization of growth processcitations
- 2014Modification of Hematite Electronic Properties with Trimethyl Aluminum to Enhance the Efficiency of Photoelectrodescitations
- 2014Holmium and titanium oxide nanolaminates by atomic layer depositioncitations
- 2010Atomic layer deposition and characterization of zirconium oxide-erbium oxide nanolaminatescitations
- 2009Behavior of zirconium oxide films processed from novel monocyclopentadienyl precursors by atomic layer depositioncitations
Places of action
Organizations | Location | People |
---|
article
Bipolar Resistive Switching in Hafnium Oxide-Based Nanostructures with and without Nickel Nanoparticles
Abstract
<jats:p>As research into additives and intentionally introduced impurities in dielectric thin film for enhancing the resistive switching based random access memories (RRAM) continues to gain momentum, the aim of the study was to evaluate the effects of chemically presynthesised Ni nanoparticles (NPs) embedded in a dielectric layer to the overall structure and resistive switching properties. HfO2-based thin films embedded with Ni NPs were produced by atomic layer deposition (ALD) from tetrakis(ethylmethylamino)hafnium (TEMAH) and the O2 plasma ALD process onto a TiN/Si substrate. The Ni NPs were separately synthesised through a continuous flow chemistry process and dispersed on the dielectric layer between the two stages of preparing the HfO2 layer. The nanodevices’ morphology and composition were analysed with physical characterisation methods and were found to be uniformly dispersed across the sample, within an amorphous HfO2 layer deposited around them. When comparing the resistive switching properties of otherwise identical samples with and without Ni NPs, the ILRS/IHRS ratio rose from around a 4 to 9 at 0.2 V reading voltage, the switching voltage dropped from ~2 V to ~1.5 V, and a distinct increase in the endurance characteristics could be seen with the addition of the nanoparticles.</jats:p>