Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ahmadabadi, Vahide Ghanooni

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024High-Rate Performance of a Designed Si Nanoparticle–Graphite Nanosheet Composite as the Anode for Lithium-Ion Batteriescitations

Places of action

Chart of shared publication
Chen, Ying Ian
1 / 3 shared
Rahman, Md Mokhlesur
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Chen, Ying Ian
  • Rahman, Md Mokhlesur
OrganizationsLocationPeople

article

High-Rate Performance of a Designed Si Nanoparticle–Graphite Nanosheet Composite as the Anode for Lithium-Ion Batteries

  • Chen, Ying Ian
  • Rahman, Md Mokhlesur
  • Ahmadabadi, Vahide Ghanooni
Abstract

<jats:p>A silicon nanoparticle–graphite nanosheet composite was prepared via a facile ball milling process for use as the anode for high-rate lithium-ion batteries. The size effect of Si nanoparticles on the structure and on the lithium-ion battery performance of the composite is evaluated. SEM and TEM analyses show a structural alteration of the composites from Si nanoparticle-surrounded graphite nanosheets to Si nanoparticle-embedded graphite nanosheets by decreasing the size of Si nanoparticles from 250 nm to 40 nm. The composites with finer Si nanoparticles provide an effective nanostructure containing encapsulated Si and free space. This structure facilitates the indirect exposure of Si to electrolyte and Si expansion during cycling, which leads to a stable solid–electrolyte interphase and elevated conductivity. An enhanced rate capability was obtained for the 40 nm Si nanoparticle–graphite nanosheet composite, delivering a specific capacity of 276 mAh g−1 at a current density of 1 C after 1000 cycles and a rate capacity of 205 mAh g−1 at 8 C.</jats:p>

Topics
  • nanoparticle
  • density
  • impedance spectroscopy
  • scanning electron microscopy
  • milling
  • composite
  • transmission electron microscopy
  • Silicon
  • Lithium
  • current density
  • ball milling
  • ball milling