Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Silva, A. Fernando

  • Google
  • 3
  • 3
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Hydrogen Bond Donors Influence on the Electrochemical Performance of Composite Graphene Electrodes/Deep Eutectic Solvents Interface3citations
  • 2021Sustainable Preparation of Nanoporous Carbons via Dry Ball Milling: Electrochemical Studies Using Nanocarbon Composite Electrodes and a Deep Eutectic Solvent as Electrolyte13citations
  • 2019Electrodeposition of Sn and Sn Composites with Carbon Materials Using Choline Chloride-Based Ionic Liquids10citations

Places of action

Chart of shared publication
Pereira, Carlos
2 / 3 shared
Costa, Renata
2 / 3 shared
Brandão, Ana Teresa
2 / 3 shared
Chart of publication period
2022
2021
2019

Co-Authors (by relevance)

  • Pereira, Carlos
  • Costa, Renata
  • Brandão, Ana Teresa
OrganizationsLocationPeople

article

Hydrogen Bond Donors Influence on the Electrochemical Performance of Composite Graphene Electrodes/Deep Eutectic Solvents Interface

  • Pereira, Carlos
  • Costa, Renata
  • Brandão, Ana Teresa
  • Silva, A. Fernando
Abstract

<jats:p>The development of energy storage devices with better performance relies on the use of innovative materials and electrolytes, aiming to reduce the carbon footprint through the screening of low toxicity electrolytes and solvent-free electrode design protocols. The application of nanostructured carbon materials with high specific surface area, to prepare composite electrodes, is being considered as a promising starting point towards improving the power and energy efficiency of energy storage devices. Non-aqueous electrolytes synthesized using greener approaches with lower environmental impact make deep eutectic solvents (DES) promising alternatives for electrochemical energy storage and conversion applications. Accordingly, this work proposes a systematic study on the effect of the composition of DES containing a diol and an amide as HBD (hydrogen bond donor: 1,2-propylene glycol and urea), on the electrochemical performance of graphene and graphite composite electrodes/DES electrolyte interface. Glassy carbon (GC) was selected as the bare electrode material substrate to prepare the composite formulations since it provides an electrochemically reproducible surface. Gravimetric capacitance was measured for commercial graphene and commercial graphite/GC composite electrodes in contact with choline chloride, complexed with 1,2-propylene glycol, and urea as the HBD in 1:2 molar ratio. The electrochemical stability was followed by assessing the charge/discharge curves at 1, 2, and 4 A g−1. For comparison purposes, a parallel study was performed using commercial graphite. A four-fold increase in gravimetric capacitance was obtained when replacing commercial graphite (1.70 F g−1) by commercial graphene (6.19 F g−1) in contact with 1,2-propylene glycol-based DES. When using urea based DES no significant change in gravimetric capacitance was observed when commercial graphite is replaced by commercial graphene.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • composite
  • Hydrogen
  • toxicity
  • gas chromatography