People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Silva, Af
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022Molecularly imprinted polymer as a synthetic antibody for the biorecognition of hazelnut Cor a 14-allergencitations
- 2021A Disposable Saliva Electrochemical MIP-Based Biosensor for Detection of the Stress Biomarker α-Amylase in Point-of-Care Applicationscitations
- 2020A layered nanocomposite of laccase, chitosan, and Fe3O4 nanoparticles-reduced graphene oxide for the nanomolar electrochemical detection of bisphenol Acitations
- 2017Zinc Electrodeposition from deep eutectic solvent containing organic additivescitations
- 2017Electrochemical detection of cardiac biomarker myoglobin using polyphenol as imprinted polymer receptorcitations
- 2016Reduced graphene oxide-nickel nanoparticles/biopolymer composite films for the sub-millimolar detection of glucosecitations
- 2015Influence of Amines on the Electrodeposition of Zn-Ni Alloy from a Eutectic-Type Ionic Liquidcitations
Places of action
Organizations | Location | People |
---|
article
A Disposable Saliva Electrochemical MIP-Based Biosensor for Detection of the Stress Biomarker α-Amylase in Point-of-Care Applications
Abstract
<jats:p>The design and synthesis of artificial receptors based on molecular imprinting (MI) technology for the development of a new MIP-based biosensor for detection of the stress biomarker α-amylase in human saliva in point-of-care (PoC) applications is described in this work. The portable electrochemical devices for monitoring α-amylase consists of cost-effective and disposable gold screen-printed electrodes (AuSPEs). To build the electrochemical device, the template biomolecule was firstly immobilized directly over the working area of the gold chip previously activated with a self-assembled monolayer (SAM) of cysteamine (CA). Then, pyrrole (Py) monomer was selected as building block of a polymeric network prepared by CV electropolymerization. After the electropolymerization process, the enzyme was removed from the polymer film in order to build the specific recognition sites for the target enzyme. The MIP biosensor showed a very wide linear concentration range (between 3.0 × 10−4 to 0.60 mg mL−1 in buffer solution and between 3.0 × 10−4 to 3.0 × 10−2 mg mL−1 in human saliva) and low detection levels were achieved (LOD < 3.0 × 10−4 mg mL−1) using square wave voltammetry (SWV) as the electroanalytical technique.</jats:p>