People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mummery, Pm
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023Delayed surface degradation in W-Ta alloys at 400°C under high-fluence 40 eV He plasma exposurecitations
- 2021High-dose ion irradiation damage in Fe28Ni28Mn26Cr18 characterised by TEM and depth-sensing nanoindentationcitations
- 2019Analysis of dynamic fracture and fragmentation of graphite bricks by combined XFEM and cohesive zone approachcitations
- 2019Configurational Entropy in Multicomponent Alloys: Matrix Formulation from Ab Initio Based Hamiltonian and Application to the FCC Cr-Fe-Mn-Ni Systemcitations
- 20173D dynamic fracture and fragmentation of AGR Graphite brick slices using XCZM
- 2017Short-Range Order in High Entropy Alloyscitations
- 2017Dynamic fracture analysis by explicit solid dynamics and implicit crack propagationcitations
- 2017Crack healing behaviour of Cr2AlC MAX phase studied by X-ray tomographycitations
- 2017The effects of ion irradiation on the micromechanical fracture strength and hardness of a self-passivating tungsten alloycitations
- 2017Micro X-ray Computed Tomography Image-based Two-scale Homogenisation of Ultra High Performance Fibre Reinforced Concretecitations
- 2016Fracture strength testing of a self-passivating tungsten alloy at the micrometre scalecitations
- 2016Investigating the effects of stress on the pore structures of nuclear grade graphitescitations
- 2016In situ observation of mechanical damage within a SiC-SiC ceramic matrix compositecitations
- 2013Observation and quantification of three-dimensional crack propagation in poly-granular graphitecitations
- 2012Gel-cast glass-ceramic tissue scaffolds of controlled architecture produced via stereolithography of mouldscitations
- 2009A finite element approach to the biomechanics of dromaeosaurid dinosaur claws
- 2008Investigating predictive capabilities of image-based modeling for woven composites in a scalable computing environment
- 2008Analysis of crack propagation in nuclear graphite using three-point bending of sandwiched specimenscitations
- 2008Nanoindentation of histological specimens using an extension of the Oliver and Pharr methodcitations
- 2005Full-field strain mapping by optical correlation of micrographs acquired during deformationcitations
Places of action
Organizations | Location | People |
---|
article
Configurational Entropy in Multicomponent Alloys: Matrix Formulation from Ab Initio Based Hamiltonian and Application to the FCC Cr-Fe-Mn-Ni System
Abstract
Configuration entropy is believed to stabilize disordered solid solution phases in multicomponent systems at elevated temperatures over intermetallic compounds by lowering the Gibbs free energy. Traditionally, the increment of configuration entropy with temperature was computed by time-consuming thermodynamic integration methods. In this work, a new formalism based on a hybrid combination of the Cluster Expansion (CE) Hamiltonian and Monte Carlo simulations is developed to predict the configuration entropy as a function of temperature from multi-body cluster probability in a multi-component system with arbitrary average composition. The multi-body probabilities are worked out by explicit inversion and direct product of a matrix formulation within orthonomal sets of point functions in the clusters obtained from symmetry independent correlation functions. The matrix quantities are determined from semi canonical Monte Carlo simulations with Effective Cluster Interactions (ECIs) derived from Density Functional Theory (DFT) calculations. The formalism is applied to analyze the 4-body cluster probabilities for the quaternary system Cr-Fe-Mn-Ni as a function of temperature and alloy concentration. It is shown that, for two specific compositions (Cr25Fe25Mn25Ni25 and Cr18Fe27Mn27Ni28), the high value of probabilities for Cr-Fe-Fe-Fe and Mn-Mn-Ni-Ni are strongly correlated with the presence of the ordered phases L12-CrFe3 and L10-MnNi, respectively. These results are in an excellent agreement with predictions of these ground state structures by ab initio calculations. The general formalism is used to investigate the configuration entropy as a function of temperature and for 285 different alloy compositions. It is found that our matrix formulation of cluster probabilities provides an efficient tool to compute configuration entropy in multi-component alloys in a comparison with the result obtained by the thermodynamic integration method. At high temperatures, it is shown that many-body cluster correlations still play an important role in understanding the configuration entropy before reaching the solid solution limit of high-entroy alloys (HEAs).