Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baruwa, Ao

  • Google
  • 2
  • 6
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Comparative Analysis of Endodontic 0.15 Stainless-Steel K-Files: Exploring Design, Composition, and Mechanical Performance2citations
  • 2024Comparative Analysis of Endodontic ISO Size 06, 08, and 10 Stainless Steel K-Files Used for Glide Path Procedurescitations

Places of action

Chart of shared publication
Chasqueira, F.
2 / 5 shared
Arantes-Oliveira, S.
2 / 2 shared
Portugal, J.
2 / 2 shared
Martins, Jnr
2 / 2 shared
Caramês, J.
1 / 2 shared
Carames, J.
1 / 4 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Chasqueira, F.
  • Arantes-Oliveira, S.
  • Portugal, J.
  • Martins, Jnr
  • Caramês, J.
  • Carames, J.
OrganizationsLocationPeople

article

Comparative Analysis of Endodontic 0.15 Stainless-Steel K-Files: Exploring Design, Composition, and Mechanical Performance

  • Chasqueira, F.
  • Arantes-Oliveira, S.
  • Portugal, J.
  • Martins, Jnr
  • Caramês, J.
  • Baruwa, Ao
Abstract

To establish a glide path, smaller files (up to size 0.15) with tapers of 2% are commonly used as pathfinding files. They pre-shape the root canal space before transitioning to larger taper endodontic instruments, aiming to prevent procedural errors. This study aimed to compare the design, metal wire composition, and mechanical characteristics of seven different ISO size 15 stainless-steel hand files (K-File and C-File+). Ninety-one new stainless-steel ISO 15 K-files were mechanically tested. All files were inspected for deformations before the assessment. Dental operating microscope, scanning electron microscope (SEM), and optical microscope analyses were conducted on four randomly selected instruments from each group, and two instruments per group underwent an energy-dispersive X-ray spectroscopy (EDS) analysis. Buckling mechanical tests were performed using an Instron universal testing machine, and microhardness was assessed using a Vickers hardness tester. The statistical analysis employed the nonparametric Mood's median test, with a significance level set at 0.05. The instrument design analysis unveiled variations in the active blade area length and the number of spirals, while maintaining consistent cross-sections and symmetrical blades. Distinct tip geometries and surface irregularities were observed. While the energy-dispersive X-ray spectroscopy confirmed similar compositions, the buckling strength and microhardness values exhibited variability across for all tested files. Notably, the Dentsply ReadySteel C-File+ recorded the highest buckling value (2.10 N), and the Dentsply ReadySteel K-File exhibited the lowest (1.00 N) (p < 0.05). Moreover, the Dentsply ReadySteel K-File recorded the highest microhardness value (703 HVN), while the SybronEndo Triple-Flex had the lowest (549 HVN) (p < 0.05). While similarities in cross-section design and metal wire composition were noted among the files, variations in the number of spirals and mechanical performance were also observed. Thus, all of these factors should be considered when selecting suitable files for an efficient root canal treatment.

Topics
  • surface
  • scanning electron microscopy
  • strength
  • steel
  • hardness
  • Energy-dispersive X-ray spectroscopy
  • wire
  • level set