Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Singh, Rahul Pratap

  • Google
  • 2
  • 10
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Evaluation of the Compressive Strength of CFRP-Wrapped Circular Concrete Columns Using Artificial Intelligence Techniques17citations
  • 2022Magnesium‐Substituted Zinc Ferrite as a Promising Nanomaterial for the Development of Humidity Sensors10citations

Places of action

Chart of shared publication
Jagan, J.
1 / 2 shared
Samui, Pijush
1 / 1 shared
Soleymani, Atefeh
1 / 2 shared
Ebid, Ahmed
1 / 9 shared
Bharati, Keval
1 / 1 shared
Kumar, Kuldeep
1 / 4 shared
Tiwari, Prabhat Ranjan
1 / 1 shared
Yadav, Bal Chand
1 / 1 shared
Kumar, Santosh
1 / 33 shared
Yadav, Avinash Chand
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Jagan, J.
  • Samui, Pijush
  • Soleymani, Atefeh
  • Ebid, Ahmed
  • Bharati, Keval
  • Kumar, Kuldeep
  • Tiwari, Prabhat Ranjan
  • Yadav, Bal Chand
  • Kumar, Santosh
  • Yadav, Avinash Chand
OrganizationsLocationPeople

article

Evaluation of the Compressive Strength of CFRP-Wrapped Circular Concrete Columns Using Artificial Intelligence Techniques

  • Jagan, J.
  • Samui, Pijush
  • Soleymani, Atefeh
  • Singh, Rahul Pratap
  • Ebid, Ahmed
Abstract

<jats:p>The wrapping of concrete structures with fiber polymers has been an essential part of concrete technology aimed at the improvement of concrete performance indices during the construction and lifelong usage of the structures. In this paper, a universal representative database was collected from multiple literature materials on the effect of different fiber-reinforced polymers on the confined compressive strength of wrapped concrete columns (Fcc). The collected data show that the Fcc value depends on the FRP thickness (t), tensile strength (Ftf), and elastic modulus (Ef), in addition to the column diameter (d) and the confined compressive strength of concrete (Fco). Five AI techniques were applied on the collected database, namely genetic programming (GP), three artificial neural networks (ANN) trained using three different algorithms, “back Propagation BP, gradually reduced gradient GRG and genetic algorithm GA”, and evolutionary polynomial regression (EPR). The results of the five developed predictive models show that (t) and Ftf have a major impact on the Fcc value, which presents the effect of confinement stress (t. Ftf/d) on the confined compressive strength (Fcc). Comparing the predicted values with the experimental ones showed that the GP model is the least accurate one, and the EPR model is the next least accurate, while the three ANN models have almost the same level of high accuracy, with an average error percentage of 5.8% and a coefficient of determination R2 of 0.961. The ANN model is more accurate than the EPR and GP predictive models, but they are suitable for manual calculation because they are closed-form equations.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • strength
  • electron spin resonance spectroscopy
  • tensile strength