People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ebid, Ahmed
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Predictive modeling of wide-shallow RC beams shear strength considering stirrups effect using (FEM-ML) approachcitations
- 2023Prediction of the cementing potential of activated pond ash reinforced with glass powder for soft soil strengthening, by an artificial neural network model
- 2023Characterization of net-zero pozzolanic potential of thermally-derived metakaolin samples for sustainable carbon neutrality construction
- 2022Evaluation of the Compressive Strength of CFRP-Wrapped Circular Concrete Columns Using Artificial Intelligence Techniquescitations
- 2022Decision Support System for Optimum Repair Technique of Concrete Bridges Girders in Egyptcitations
- 2022Global warming potential-based life cycle assessment and optimization of the compressive strength of fly ash-silica fume concrete; environmental impact consideration
- 2021Prediction of shear strength of FRP reinforced beams with and without stirrups using (GP) technique
- 2019Effect of Wrapping Reinforced Concrete Surface with FRP Sheets on Corrosion Resistancecitations
- 2017STRENGTH CHARACTERISTICS OF HANDY LAY-UP GFRP I-BEAMS
Places of action
Organizations | Location | People |
---|
article
Evaluation of the Compressive Strength of CFRP-Wrapped Circular Concrete Columns Using Artificial Intelligence Techniques
Abstract
<jats:p>The wrapping of concrete structures with fiber polymers has been an essential part of concrete technology aimed at the improvement of concrete performance indices during the construction and lifelong usage of the structures. In this paper, a universal representative database was collected from multiple literature materials on the effect of different fiber-reinforced polymers on the confined compressive strength of wrapped concrete columns (Fcc). The collected data show that the Fcc value depends on the FRP thickness (t), tensile strength (Ftf), and elastic modulus (Ef), in addition to the column diameter (d) and the confined compressive strength of concrete (Fco). Five AI techniques were applied on the collected database, namely genetic programming (GP), three artificial neural networks (ANN) trained using three different algorithms, “back Propagation BP, gradually reduced gradient GRG and genetic algorithm GA”, and evolutionary polynomial regression (EPR). The results of the five developed predictive models show that (t) and Ftf have a major impact on the Fcc value, which presents the effect of confinement stress (t. Ftf/d) on the confined compressive strength (Fcc). Comparing the predicted values with the experimental ones showed that the GP model is the least accurate one, and the EPR model is the next least accurate, while the three ANN models have almost the same level of high accuracy, with an average error percentage of 5.8% and a coefficient of determination R2 of 0.961. The ANN model is more accurate than the EPR and GP predictive models, but they are suitable for manual calculation because they are closed-form equations.</jats:p>