Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mekterović, Igor

  • Google
  • 1
  • 5
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Application of GISAXS in the Investigation of Three-Dimensional Lattices of Nanostructures16citations

Places of action

Chart of shared publication
Bernstorff, Sigrid
1 / 24 shared
Micetic, Maja
1 / 1 shared
Tkalčević, Marija
1 / 3 shared
Salamon, Krešimir
1 / 7 shared
Basioli, Lovro
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Bernstorff, Sigrid
  • Micetic, Maja
  • Tkalčević, Marija
  • Salamon, Krešimir
  • Basioli, Lovro
OrganizationsLocationPeople

article

Application of GISAXS in the Investigation of Three-Dimensional Lattices of Nanostructures

  • Bernstorff, Sigrid
  • Micetic, Maja
  • Mekterović, Igor
  • Tkalčević, Marija
  • Salamon, Krešimir
  • Basioli, Lovro
Abstract

<jats:p>The application of the grazing-incidence small-angle X-ray scattering (GISAXS) technique for the investigation of three-dimensional lattices of nanostructures is demonstrated. A successful analysis of three-dimensionally ordered nanostructures requires applying a suitable model for the description of the nanostructure ordering. Otherwise, it is possible to get a good agreement between the experimental and the simulated data, but the parameters obtained by fitting may be completely incorrect. In this paper, we theoretically examine systems having different types of nanostructure ordering, and we show how the choice of the correct model for the description of ordering influences the analysis results. Several theoretical models are compared in order to show how to use GISAXS in the investigation of self-assembled arrays of nanoparticles, and also in arrays of nanostructures obtained by ion-beam treatment of thin films or surfaces. All models are supported by experimental data, and the possibilities and limitations of GISAXS for the determination of material structure are discussed.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • thin film
  • X-ray scattering