Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chudoba, Tadeusz

  • Google
  • 2
  • 8
  • 197

Institute of High Pressure Physics

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Current Trends in the Development of Microwave Reactors for the Synthesis of Nanomaterials in Laboratories and Industries: A Review139citations
  • 2013Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation58citations

Places of action

Chart of shared publication
Smoleń, Dariusz
1 / 1 shared
Kurzydłowski, Krzysztof
1 / 114 shared
Lewandowska-Szumieł, Małgorzata
1 / 2 shared
Święszkowski, Wojciech
1 / 53 shared
Kołodziejczyk-Mierzyńska, Małgorzata
1 / 1 shared
Łojkowski, Witold
1 / 7 shared
Kędzierska, Aleksandra
1 / 1 shared
Malka, Iwona
1 / 1 shared
Chart of publication period
2018
2013

Co-Authors (by relevance)

  • Smoleń, Dariusz
  • Kurzydłowski, Krzysztof
  • Lewandowska-Szumieł, Małgorzata
  • Święszkowski, Wojciech
  • Kołodziejczyk-Mierzyńska, Małgorzata
  • Łojkowski, Witold
  • Kędzierska, Aleksandra
  • Malka, Iwona
OrganizationsLocationPeople

article

Current Trends in the Development of Microwave Reactors for the Synthesis of Nanomaterials in Laboratories and Industries: A Review

  • Chudoba, Tadeusz
Abstract

<jats:p>Microwave energy has been in use for many applications for more than 50 years, from communication, food processing, and wood drying to chemical reactions and medical therapy. The areas, where microwave technology is applied, include drying, calcination, decomposition, powder synthesis, sintering, and chemical process control. Before the year 2000, microwaves were used to produce ceramics, semiconductors, polymers, and inorganic materials; in next years, some new attempts were made as well. Nowadays, it has been found that microwave sintering can also be applied to sintered powder and ceramics and is more effective than conventional sintering. Particularly interesting is its use for the synthesis of nanomaterials. This review identifies the main sources of microwave generation, the delivery mechanisms of microwave energy, and the typical designs and configurations of microwave devices, as well as the measurement and construction material problems related to microwave technology. We focus our attention on the configurations, materials, optimized geometries, and solvents used for microwave devices, providing examples of products, especially nanoparticles and other nanomaterials. The identified microwave devices are divided into four groups, depending on the scale, the maximum pressure developed, the highest temperature for sintering, or other special multi-functions. The challenges of using microwave energy for the synthesis of nanopowders have been identified as well. The desirable characteristics of microwave reactors in the synthesis of nanostructures, as well as their superiority over conventional synthetic methods, have been presented. We have also provided a review of the commercial and self-designed microwave reactors, digestors, and sintering furnaces for technology for synthesis of nanomaterials and other industries.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • polymer
  • semiconductor
  • ceramic
  • wood
  • decomposition
  • drying
  • sintering