Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Uzun, Fatih

  • Google
  • 1
  • 6
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Extended Caking Method for Strain Analysis of Polycrystalline Diffraction Debye–Scherrer Rings2citations

Places of action

Chart of shared publication
Daisenberger, Dominik
1 / 14 shared
Chen, Jingwei
1 / 2 shared
Besnard, Cyril
1 / 4 shared
Korsunsky, Am
1 / 46 shared
Wang, Zifan
1 / 4 shared
Liogas, Konstantinos
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Daisenberger, Dominik
  • Chen, Jingwei
  • Besnard, Cyril
  • Korsunsky, Am
  • Wang, Zifan
  • Liogas, Konstantinos
OrganizationsLocationPeople

article

Extended Caking Method for Strain Analysis of Polycrystalline Diffraction Debye–Scherrer Rings

  • Daisenberger, Dominik
  • Chen, Jingwei
  • Uzun, Fatih
  • Besnard, Cyril
  • Korsunsky, Am
  • Wang, Zifan
  • Liogas, Konstantinos
Abstract

Peer reviewed: True ; Acknowledgements: The authors acknowledge the support from EPSRC project EP/V007785/1 “Rich Nonlinear Tomography for advanced materials”, EuroHPC project grant EHPC-DEV-2022D10-054 for allowing the simulations to be performed on the Luxembourg national supercomputer MeluXina and are also grateful to the LuxProvide teams for their expert support. The authors thank Diamond Light Source (Didcot, UK) for beamtime allocation CY30712-2 to I15 beamline. ; Publication status: Published ; Funder: The Engineering and Physical Sciences Research Council (EPSRC) ; <jats:p>Polycrystalline diffraction is a robust methodology employed to assess elastic strain within crystalline components. The Extended Caking (exCaking) method represents a progression of this methodology beyond the conventional azimuthal segmentation (Caking) method for the quantification of elastic strains using Debye–Scherrer 2D X-ray diffraction rings. The proposed method is based on the premise that each complete diffraction ring contains comprehensive information about the complete elastic strain variation in the plane normal to the incident beam, which allows for the introduction of a novel algorithm that analyses Debye–Scherrer rings with complete angular variation using ellipse geometry, ensuring accuracy even for small eccentricity values and offering greater accuracy overall. The console application of the exCaking method allows for the accurate analysis of polycrystalline X-ray diffraction data according to the up-to-date rules presented in the project repository. This study presents both numerical and empirical examinations and error analysis to substantiate the method’s reliability and accuracy. A specific validation case study is also presented to analyze the distribution of residual elastic strains in terms of force balance in a Ti-6Al-4V titanium alloy bar plastically deformed by four-point bending.</jats:p>

Topics
  • impedance spectroscopy
  • x-ray diffraction
  • simulation
  • tomography
  • titanium
  • titanium alloy