People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alqurashi, Hind
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
- 2023Theoretical Investigations of the Structural, Dynamical, Electronic, Magnetic, and Thermoelectric Properties of CoMRhSi (M = Cr, Mn) Quaternary Heusler Alloyscitations
- 2022Lattice Dynamics, Mechanical Properties, Electronic Structure and Magnetic Properties of Equiatomic Quaternary Heusler Alloys CrTiCoZ (Z = Al, Si) Using First Principles Calculationscitations
Places of action
Organizations | Location | People |
---|
article
Theoretical Investigations of the Structural, Dynamical, Electronic, Magnetic, and Thermoelectric Properties of CoMRhSi (M = Cr, Mn) Quaternary Heusler Alloys
Abstract
<jats:p>The structural, dynamical, electrical, magnetic, and thermoelectric properties of CoMRhSi (M = Cr, Mn) quaternary Heusler alloys (QHAs) were investigated using density functional theory (DFT). The Y-type-II crystal structure was found to be the most stable configuration for these QHAs. Both CoCrRhSi and CoMnRhSi alloys possess a half-metallic behavior with a 100% spin-polarization as the majority spin channel is metallic. On the other hand, the minority spin channel is semiconducting with narrow indirect band gaps of 0.54 eV and 0.57 eV, respectively, along the Γ−X high symmetry line. In addition, both CoCrRhSi and CoMnRhSi alloys possess a ferromagnetic structure with total magnetic moments of 4 μB, and 5 μB, respectively, which are prominent for spintronics applications. The thermoelectric properties of the subject QHAs were calculated by using Boltzmann transport theory within the constant relaxation time approximation. The lattice thermal conductivities were also evaluated by Slack’s equation. The predicted values of the figure-of-merit (ZT) for CoCrRhSi and CoMnRhSi were found to be 0.84 and 2.04 at 800 K, respectively, making them ideal candidates for thermoelectric applications.</jats:p>