Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Straumal, Boris

  • Google
  • 12
  • 49
  • 308

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2024Severe plastic deformation for producing superfunctional ultrafine-grained and heterostructured materials: An interdisciplinary reviewcitations
  • 2024Severe plastic deformation for producing Superfunctional ultrafine-grained and heterostructured materials: An interdisciplinary review85citations
  • 2024Precise spectral directional infrared emissivity of a Cantor high-entropy alloy1citations
  • 2023Coexistence of Intermetallic Complexions and Bulk Particles in Grain Boundaries in the ZEK100 Alloy12citations
  • 2023Grain Boundary Wetting Transition in the Mg-Based ZEK 100 Alloy56citations
  • 2023Influence of Heat Treatment and High-Pressure Torsion on Phase Transformations in TiZrHfMoCr High-Entropy Alloy6citations
  • 2023Effect of High-Pressure Torsion on Phase Formation and Mechanical Properties of a High-Entropy TiZrHfMoCrCo Alloy1citations
  • 2022Using severe plastic deformation to produce nanostructured materials with superior properties74citations
  • 2022Modification of Biocorrosion and Cellular Response of Magnesium Alloy WE43 by Multiaxial Deformation6citations
  • 2021Grain Boundary Wetting Phenomena in High Entropy Alloys Containing Nitrides, Carbides, Borides, Silicides, and Hydrogen: A Review19citations
  • 2018Coarsening of (αTi) + (βTi) Microstructure in the Ti–Al–V Alloy at Constant Temperature27citations
  • 2016Grain refinement of intermetallic compounds in the Cu-Sn system under high pressure torsion21citations

Places of action

Chart of shared publication
Valiev, Ruslan Z.
2 / 13 shared
Gornakova, Alena
5 / 5 shared
Davdian, Gregory
3 / 3 shared
Korneva, Anna
6 / 10 shared
Chulist, Robert
3 / 23 shared
Langdon, Terence G.
2 / 178 shared
Echániz Ariceta, Telmo
1 / 10 shared
Gabirondo López, Jon
1 / 2 shared
López Ferreño, Iñaki
1 / 6 shared
Kogtenkova, Olga
1 / 1 shared
Gerstein, Gregory
2 / 25 shared
Straumal, Alexander
3 / 3 shared
Khrapova, Natalya
2 / 2 shared
Druzhinin, Aleksandr
2 / 2 shared
Davdian, Grigory
3 / 5 shared
Orlov, Valery
2 / 2 shared
Tsoy, Kristina
2 / 2 shared
Druzhinin, Alexander
1 / 1 shared
Afonikova, Natalia
1 / 1 shared
Tyurin, Alexander
1 / 2 shared
Chernyaeva, Elena
1 / 1 shared
Imayev, Marcel F.
1 / 1 shared
Kuzmin, Alexei
2 / 15 shared
Gornakova, Alena S.
2 / 8 shared
Khayretdinov, Nafis F.
1 / 1 shared
Afonikova, Natalia S.
1 / 3 shared
Orlov, Valeriy I.
1 / 1 shared
Kabirova, Dilara B.
1 / 1 shared
Nekrasov, Alexei N.
1 / 2 shared
Czaja, Paweł
1 / 14 shared
Martynenko, Natalia
1 / 4 shared
Rybalchenko, Georgy
1 / 11 shared
Novruzov, Keryam
1 / 1 shared
Rybalchenko, Olga
1 / 9 shared
Gabdullin, Maratbek
1 / 1 shared
Estrin, Yuri
1 / 25 shared
Dobatkin, Sergey
1 / 9 shared
Kabiyeva, Aigul
1 / 1 shared
Mansharipova, Almagul
1 / 1 shared
Kiselevskiy, Mikhail
1 / 8 shared
Rabkin, Eugen
1 / 28 shared
López, Gabriel Alejandro
1 / 16 shared
Baretzky, Brigitte
1 / 2 shared
Prokofiev, Sergey I.
1 / 1 shared
Schell, Norbert
1 / 180 shared
Zięba, P.
1 / 1 shared
Baɬa, P.
1 / 1 shared
Kilmametov, A.
1 / 8 shared
Cios, G.
1 / 12 shared
Chart of publication period
2024
2023
2022
2021
2018
2016

Co-Authors (by relevance)

  • Valiev, Ruslan Z.
  • Gornakova, Alena
  • Davdian, Gregory
  • Korneva, Anna
  • Chulist, Robert
  • Langdon, Terence G.
  • Echániz Ariceta, Telmo
  • Gabirondo López, Jon
  • López Ferreño, Iñaki
  • Kogtenkova, Olga
  • Gerstein, Gregory
  • Straumal, Alexander
  • Khrapova, Natalya
  • Druzhinin, Aleksandr
  • Davdian, Grigory
  • Orlov, Valery
  • Tsoy, Kristina
  • Druzhinin, Alexander
  • Afonikova, Natalia
  • Tyurin, Alexander
  • Chernyaeva, Elena
  • Imayev, Marcel F.
  • Kuzmin, Alexei
  • Gornakova, Alena S.
  • Khayretdinov, Nafis F.
  • Afonikova, Natalia S.
  • Orlov, Valeriy I.
  • Kabirova, Dilara B.
  • Nekrasov, Alexei N.
  • Czaja, Paweł
  • Martynenko, Natalia
  • Rybalchenko, Georgy
  • Novruzov, Keryam
  • Rybalchenko, Olga
  • Gabdullin, Maratbek
  • Estrin, Yuri
  • Dobatkin, Sergey
  • Kabiyeva, Aigul
  • Mansharipova, Almagul
  • Kiselevskiy, Mikhail
  • Rabkin, Eugen
  • López, Gabriel Alejandro
  • Baretzky, Brigitte
  • Prokofiev, Sergey I.
  • Schell, Norbert
  • Zięba, P.
  • Baɬa, P.
  • Kilmametov, A.
  • Cios, G.
OrganizationsLocationPeople

article

Grain Boundary Wetting Transition in the Mg-Based ZEK 100 Alloy

  • Gerstein, Gregory
  • Straumal, Alexander
  • Khrapova, Natalya
  • Druzhinin, Aleksandr
  • Davdian, Grigory
  • Orlov, Valery
  • Straumal, Boris
  • Tsoy, Kristina
Abstract

<jats:p>Modern magnesium-based alloys are broadly used in various industries as well as for biodegradable medical implants due to their exceptional combination of light weight, strength, and plasticity. The studied ZEK100 alloy had a nominal composition of 1 wt.% zinc, 0.1 wt.% zirconium, and 0.1 wt.% rare earth metals (REMs) such as Y, Ce, Nd, and La, with the remainder being Mg. It has been observed that between the solidus (Ts = 529.5 ± 0.5 °C) and liquidus temperature (Tl = 645 ± 5 °C), the Mg/Mg grain boundaries can contain either the droplets of a melt (incomplete or partial wetting) or the continuous liquid layers separating the abutting Mg grains (complete wetting). With the temperature increasing from Ts to Tl, the transformation proceeds from incomplete to complete grain boundary wetting. Below 565 °C, all grain boundaries are partially wetted by the melt. Above 565 °C, the completely wetted Mg/Mg grain boundaries appear. Their portion grows quickly with an increasing temperature until reaching 100% at 622 °C. Above 622 °C, all the solid Mg grains are completely surrounded by the melt. After rapid solidification, the REM-rich melt forms brittle intermetallic compounds. The compression strength as well as the compression yield strength parameter σ02 strongly depend on the morphology of the grain boundary layers. If the hard and brittle intermetallic phase has the shape of separated particles (partial wetting), the overall compression strength is about 341 MPa and σ02 = 101 MPa. If the polycrystal contains the continous intergarnular layers of the brittle intermetallic phase (complete wetting), the overall compression strength drops to 247 Mpa and σ02 to 40 Mpa. We for the first time observed, therefore, that the grain boundary wetting phenomena can strongly influence the mechanical properties of a polycrystal. Therefore, grain boundary wetting can be used for tailoring the behavior of materials.</jats:p>

Topics
  • impedance spectroscopy
  • morphology
  • compound
  • grain
  • grain boundary
  • Magnesium
  • Magnesium
  • melt
  • zinc
  • zirconium
  • strength
  • plasticity
  • yield strength
  • intermetallic
  • rare earth metal
  • rapid solidification