People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dobatkin, Sergey
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Biocompatibility and Degradation of Fe-Mn-5Si Alloy after Equal-Channel Angular Pressing: In Vitro and In Vivo Studycitations
- 2023Effect of Rotary Swaging on Mechanical and Operational Properties of Zn–1%Mg and Zn–1%Mg–0.1%Ca Alloys
- 2023Effect of Rotary Swaging on Mechanical and Operational Properties of Zn–1%Mg and Zn–1%Mg–0.1%Ca Alloyscitations
- 2023Effect of Samarium on the Properties of Hot-Extruded Mg–Y–Gd–Zr Alloyscitations
- 2023Bioactivity Features of a Zn-1%Mg-0.1%Dy Alloy Strengthened by Equal-Channel Angular Pressingcitations
- 2022Effect of High-Pressure Torsion on Microstructure, Mechanical and Operational Properties of Zn-1%Mg-0.1%Ca Alloycitations
- 2022Effect of Rotary Swaging on the Structure, Mechanical Characteristics and Aging Behavior of Cu-0.5%Cr-0.08%Zr Alloycitations
- 2022Structure, Biodegradation, and In Vitro Bioactivity of Zn–1%Mg Alloy Strengthened by High-Pressure Torsioncitations
- 2022Modification of Biocorrosion and Cellular Response of Magnesium Alloy WE43 by Multiaxial Deformationcitations
Places of action
Organizations | Location | People |
---|
article
Effect of Samarium on the Properties of Hot-Extruded Mg–Y–Gd–Zr Alloys
Abstract
<jats:p>The effect of such an additional promising alloying element as samarium on hot-extruded Mg–Y–Gd–Zr alloys is investigated. The microstructure, kinetics of aging during the decomposition of a supersaturated Mg solid solution, and the mechanical properties of the alloys are studied. The differences of the recrystallization processes that occur in hot-extruded alloys with various contents of samarium (0, 1.7, 2.5%) are demonstrated. After hot extrusion, Mg–Y–Gd–Zr and Mg–Y–Gd–Sm–Zr alloys are additionally hardened during aging due to the decomposition of a supersaturated Mg solid solution. At the same time, samarium changes the nature of this hardening. The alloys with samarium are hardened faster, and the maximum hardness is achieved with shorter aging exposures. The mechanical properties of hot-extruded Mg–Y–Gd–Zr alloys with samarium addition are determined at room and elevated up to 300 °C temperatures. The efficiency and expediency of using samarium both as a separate alloying element and as a partial replacement of more expensive rare-earth elements in alloys with yttrium and gadolinium are shown.</jats:p>