Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Melendrez, Manuel

  • Google
  • 1
  • 6
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Exploring the Impact of Cooling Rate on Microstructural Features, Mechanical Properties, and Corrosion Resistance of a Novel Nb-Stabilized Super Duplex Stainless Steel in Shielded Metal Arc Welding2citations

Places of action

Chart of shared publication
Oñate Soto, Angelo
1 / 1 shared
Torres, Enrique
1 / 1 shared
Rojas, David
1 / 4 shared
Ramírez, Jesús
1 / 2 shared
Olave, Diego
1 / 1 shared
Tuninetti, Víctor
1 / 13 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Oñate Soto, Angelo
  • Torres, Enrique
  • Rojas, David
  • Ramírez, Jesús
  • Olave, Diego
  • Tuninetti, Víctor
OrganizationsLocationPeople

article

Exploring the Impact of Cooling Rate on Microstructural Features, Mechanical Properties, and Corrosion Resistance of a Novel Nb-Stabilized Super Duplex Stainless Steel in Shielded Metal Arc Welding

  • Oñate Soto, Angelo
  • Torres, Enrique
  • Rojas, David
  • Ramírez, Jesús
  • Olave, Diego
  • Melendrez, Manuel
  • Tuninetti, Víctor
Abstract

<jats:p>The corrosion and mechanical response produced by quenching in the welded joint of a new Nb-doped stainless steel designed by the CALPHAD method and produced by open-atmosphere casting with recycled materials were investigated to contribute to the circular economy and to establish disruptive manufacturing criteria based on metallurgical principles. The steel was initially subjected to solubilization heat treatment and partial solubilization treatment at 1090 °C to obtain an appropriate α/γ balance and carbide solubilization. It was then welded by the SMAW process, quenched, and tempered at three different cooling rates. As a result, a good fit between the phases predicted by the CALPHAD method and those observed by X-ray diffraction and scanning electron microscopy were obtained, with minor differences attributable to the precipitation and diffusion kinetics required for dissolution or nucleation and growth of the phases in the system. The forced air quenching mechanism was identified as providing an α/γ phase equilibrium equivalent to 62/38 as the most effective quenching method for achieving the optimum mechanical and corrosion response, even with the post-weld σ phase and showing superior results to those of the base metal. The outstanding mechanical and corrosion responses resulted from a proper balance of the primary phases in the duplex steel with a precipitation-strengthening mechanism. The damage tolerance obtained by forced air quenching was superior to that obtained by water and air quenching, with a PSE of 24.71 GPa% post-welding.</jats:p>

Topics
  • stainless steel
  • corrosion
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • carbide
  • precipitation
  • casting
  • quenching
  • CALPHAD