Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rodenbücher, Christian

  • Google
  • 10
  • 27
  • 47

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Transition to metallic and superconducting states induced by thermalor electrical deoxidation of the dislocation network in the surface regionof SrTiO3citations
  • 2023Heterogeneity in La distribution in highly La-doped SrTiO$_{3}$ crystals1citations
  • 2023Annihilation and generation of dislocations by irradiation by ions and electrons in strontium titanate single crystal1citations
  • 2023The Effect of Reduction and Oxidation Processes on the Work Function of Metal Oxide Crystals: TiO2(110) and SrTiO3(001) Case7citations
  • 2021Is Reduced Strontium Titanate a Semiconductor or a Metal?citations
  • 2020Localized electrochemical redox reactions in yttria-stabilized zirconia single crystals7citations
  • 2020Localized electrochemical redox reactions in yttria-stabilized zirconia single crystals7citations
  • 2019Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation17citations
  • 2014Fast mapping of inhomogeneities in the popular metallic perovskite Nb:SrTiO 3 by confocal Raman microscopy7citations
  • 2014Resistive switching phenomena of extended defects in Nb-doped SrTiO$_{3}$ under influence of external gradientscitations

Places of action

Chart of shared publication
Simon, Arndt
1 / 6 shared
Keller, Hugo
1 / 1 shared
Rogacki, Krzysztof
1 / 3 shared
Szot, Krzysztof
5 / 5 shared
Bihlmayer, Gustav
1 / 15 shared
Roleder, Krystian
1 / 6 shared
Speier, Wolfgang
1 / 1 shared
Bussmann-Holder, Annette
1 / 1 shared
Krok, Franciszek
7 / 18 shared
Szot, Kristof
4 / 10 shared
Pilch, Michał Marek
1 / 1 shared
Kruk, Adam
1 / 5 shared
Cempura, Grzegorz
1 / 9 shared
Jany, Benedykt
2 / 8 shared
Wojtyniak, Marcin
1 / 6 shared
Rogala, Maciej
1 / 1 shared
Cieślik, Karol
2 / 2 shared
Wrana, Dominik
4 / 8 shared
Bette, Sebastian
1 / 5 shared
Guguschev, Christo
1 / 3 shared
Korte, Carsten
2 / 3 shared
Kort, Carsten
1 / 1 shared
Jany, Benedykt R.
1 / 3 shared
Belza, Wojciech
1 / 1 shared
Jauß, Andrea
1 / 1 shared
Havel, Viktor
1 / 3 shared
Waser, Rainer
1 / 29 shared
Chart of publication period
2024
2023
2021
2020
2019
2014

Co-Authors (by relevance)

  • Simon, Arndt
  • Keller, Hugo
  • Rogacki, Krzysztof
  • Szot, Krzysztof
  • Bihlmayer, Gustav
  • Roleder, Krystian
  • Speier, Wolfgang
  • Bussmann-Holder, Annette
  • Krok, Franciszek
  • Szot, Kristof
  • Pilch, Michał Marek
  • Kruk, Adam
  • Cempura, Grzegorz
  • Jany, Benedykt
  • Wojtyniak, Marcin
  • Rogala, Maciej
  • Cieślik, Karol
  • Wrana, Dominik
  • Bette, Sebastian
  • Guguschev, Christo
  • Korte, Carsten
  • Kort, Carsten
  • Jany, Benedykt R.
  • Belza, Wojciech
  • Jauß, Andrea
  • Havel, Viktor
  • Waser, Rainer
OrganizationsLocationPeople

article

The Effect of Reduction and Oxidation Processes on the Work Function of Metal Oxide Crystals: TiO2(110) and SrTiO3(001) Case

  • Rogala, Maciej
  • Szot, Krzysztof
  • Cieślik, Karol
  • Wrana, Dominik
  • Rodenbücher, Christian
  • Krok, Franciszek
Abstract

<jats:p>The strict control of the work function of transition metal oxide crystals is of the utmost importance not only to fundamental research but also to applications based on these materials. Transition metal oxides are highly abundant in electronic devices, as their properties can be easily modified using redox processes. However, this ease of tuning is a double-edged sword. With the ease of manipulation comes difficulty in controlling the corresponding process. In this study, we demonstrate how redox processes can be induced in a laboratory setting and how they affect the work function of two model transition metal oxide crystals, namely titanium dioxide TiO2(110) and strontium titanate SrTiO3(001). To accomplish this task, we utilized Kelvin Probe Force Microscopy (KPFM) to monitor changes in work function, Scanning Tunneling Microscopy (STM), and Low-Energy Electron Diffraction (LEED) to check the surface morphology and reconstruction, and we also used X-ray Photoelectron Spectroscopy (XPS) to determine how the surface composition evolves. We also show that using redox processes, the work function of titanium dioxide can be modified in the range of 3.4–5.0 eV, and that of strontium titanate can be modified in the range of 2.9–4.5 eV. Moreover, we show that the presence of an oxygen-gaining material in the vicinity of a transition metal oxide during annealing can deepen the changes to its stoichiometry and therefore the work function.</jats:p>

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • x-ray photoelectron spectroscopy
  • Oxygen
  • Strontium
  • titanium
  • annealing
  • Kelvin probe force microscopy
  • low energy electron diffraction
  • scanning tunneling microscopy