People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Abdoulaye, Abdoul Razak Ayouba
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Strain-Rate Dependence of Plasticity and Phase Transition in [001]-Oriented Single-Crystal Iron
Abstract
Non-equilibrium molecular dynamics simulations have been used to investigate strain-rate dependence of plasticity and phase transition in [001]-oriented single-crystal iron under ramp compression. Here, plasticity is governed by deformation twinning, in which kinetics is tightly correlated with the loading rate. Over the investigated range of strain rates, a hardening-like effect is found to shift the onset of the structural bcc-to-hcp phase transformation to a high, almost constant stress during the ramp compression regime. However, when the ramp evolves into a shock wave, the bcc–hcp transition is triggered whenever the strain rate associated with the plastic deformation reaches some critical value, which depends on the loading rate, leading to a constitutive functional dependence of the transition onset stress on the plastic deformation rate, which is in overall consistence with the experimental data under laser compression.