People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chudoba, Dorota
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Study of the Applicability of Magnetic Iron-Containing Nanoparticles in Hyperthermia and Determination of Their Resistance to Degradation Processescitations
- 2022Carbon fibres as potential bone implants with controlled doxorubicin releasecitations
- 2020Application of Fe2O3/CeO2 nanocomposites for the purification of aqueous mediacitations
- 2020Carboranes immobilization on Fe3O4 nanocomposites for targeted deliverycitations
- 2020Stability and cytotoxicity study of NiFe2O4 nanocomposites synthesized by co-precipitation and subsequent thermal annealingcitations
- 2019Study of phase transformations, structural, corrosion properties and cytotoxicity of magnetite-based nanoparticlescitations
Places of action
Organizations | Location | People |
---|
article
Study of the Applicability of Magnetic Iron-Containing Nanoparticles in Hyperthermia and Determination of Their Resistance to Degradation Processes
Abstract
<jats:p>The article presents the results of evaluating the applicability of various types of iron-containing nanoparticles in magnetic hyperthermia, as well as determining the degradation resistance of nanoparticles. The objects of study were iron-containing nanoparticles obtained by chemical precipitation and subsequent modification with gold, gadolinium, and neodymium. The main methods for studying the properties of the synthesized nanoparticles were transmission electron microscopy, X-ray phase analysis, and Mössbauer spectroscopy. Evaluation of the efficiency of the use of the synthesized nanoparticles in magnetic hyperthermia showed that Fe3O4@GdFeO3 nanoparticles, for which the specific absorption rate was more than 120 W/g, have the highest efficiency. An assessment of the resistance of the synthesized nanoparticles to corrosion in water at different temperatures showed that Fe2O3@NdFeO3 and Fe3O4@GdFeO3 nanoparticles have the highest resistance to degradation. It has been established that in the case of the initial Fe3O4 nanoparticles, the degradation processes are accompanied by partial destruction of the particles, followed by amorphization and destruction, while for Fe2O3@NdFeO3 and Fe3O4@GdFeO3 nanoparticles, the degradation processes proceed much more slowly, due to the presence of interfacial boundaries, which slow down the corrosion processes. The obtained results of corrosion tests in aqueous media make it possible to predict the area and time frame of applicability of iron-containing nanoparticles when using them in the biomedical direction, as well as to determine storage conditions.</jats:p>