People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kozlovskiy, Artem
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Investigation of the Phase Composition, Structural, Mechanical, and Dielectric Properties of (1 − x)∙ZrO2-x∙CeO2 Ceramics Synthesized by the Solid-State Methodcitations
- 2023Study of the Effect of Adding Nb2O5 on Calcium Titanate-Based Ferroelectric Ceramicscitations
- 2023Study of β-Ga2O3 Ceramics Synthesized under Powerful Electron Beamcitations
- 2023Study of the Structural, Electrical, and Mechanical Properties and Morphological Features of Y-Doped CeO2 Ceramics with Porous Structurecitations
- 2023Study of the Kinetics of Radiation Damage in CeO2 Ceramics upon Irradiation with Heavy Ionscitations
- 2023Effects of Structural Radiation Disorder in the Near-Surface Layer of Alloys Based on NbTiVZr Compounds Depending on the Variation of Alloy Componentscitations
- 2023Study of the Aid Effect of CuO-TiO2-Nb2O5 on the Dielectric and Structural Properties of Alumina Ceramicscitations
- 2023Structural, Dielectric, and Mechanical Properties of High-Content Cubic Zirconia Ceramics Obtained via Solid-State Synthesiscitations
- 2022Properties of Perovskite-like Lanthanum Strontium Ferrite Ceramics with Variation in Lanthanum Concentrationcitations
- 2022Study of the Applicability of Magnetic Iron-Containing Nanoparticles in Hyperthermia and Determination of Their Resistance to Degradation Processescitations
- 2022Application of UV-Vis Optical Spectroscopy and X-ray Diffraction Methods to Describe the Effect of Alpha-Emitting Radionuclides (Radon) When They Are Detected by Solid-State Film Detectorscitations
- 2022Study of Phase Transformations and Hyperfine Interactions in Fe3O4 and Fe3O4@Au Nanoparticlescitations
Places of action
Organizations | Location | People |
---|
article
Properties of Perovskite-like Lanthanum Strontium Ferrite Ceramics with Variation in Lanthanum Concentration
Abstract
<jats:p>The purpose of this work is to study the effect of lanthanum (La) concentration on the phase formation, conductivity, and thermophysical properties of perovskite-like strontium ferrite ceramics. At the same time, the key difference from similar studies is the study of the possibility of obtaining two-phase composite ceramics, the presence of various phases in which will lead to a change in the structural, strength, and conductive properties. To obtain two-phase composite ceramics by mechanochemical solid-phase synthesis, the method of the component molar ratio variation was used, which, when mixed, makes it possible to obtain a different ratio of elements and, as a result, to vary the phase composition of the ceramics. Scanning electron microscopy, X-ray phase analysis, and impedance spectroscopy were used as research methods, the combination of which made it possible to comprehensively study the properties of the synthesized ceramics. Analysis of phase changes depending on lanthanum concentration change can be written as follows: (La0.3Sr0.7)2FeO4/LaSr2Fe3O8 → (La0.3Sr0.7)2FeO4/LaSr2Fe3O8/Sr2Fe2O5 → (La0.3Sr0.7)2FeO4/Sr2Fe2O5. Results of impedance spectroscopy showed that with an increase in lanthanum concentration from 0.10 to 0.25 mol in the synthesized ceramics, the value of the dielectric permittivity increases significantly from 40.72 to 231.69, the dielectric loss tangent increases from 1.07 to 1.29 at a frequency of 10,000 Hz, and electrical resistivity decreases from 1.29 × 108 to 2.37 × 107 Ω∙cm.</jats:p>