Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Szewczyk, Daria

  • Google
  • 5
  • 35
  • 94

Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Mixology of MA1- xEAxPbI3Hybrid Perovskites26citations
  • 2022Low Temperature Thermal Properties of Nanodiamond Ceramics4citations
  • 2022Effect of Graphene Addition on the Thermal and Persistent Luminescence Properties of Gd2.994Ce0.006Ga3Al2O12 and Gd2.964Ce0.006Dy0.03Ga3Al2O12 Ceramics1citations
  • 2020Suppression of phase transitions and glass phase signatures in mixed cation halide perovskites63citations
  • 2016Thermal properties of Ti-doped Cu–Zn soft ferrites used as thermally actuated material for magnetizing superconductorscitations

Places of action

Chart of shared publication
Ptak, Maciej
1 / 4 shared
Sieradzki, Adam
2 / 10 shared
Gągor, Anna
1 / 2 shared
Mączka, Mirosław
1 / 5 shared
Nas, Sergejus Balčiū
1 / 1 shared
Kalendra, Vidmantas
2 / 8 shared
Grigalaitis, Robertas
2 / 16 shared
Banys, Jū Ras
1 / 2 shared
Svirskas, Šarū Nas
1 / 1 shared
Kudrawiec, Robert
1 / 8 shared
Klimavicius, Vytautas
1 / 1 shared
Pieniążek, Agnieszka
1 / 1 shared
Šimėnas, Mantas
1 / 2 shared
Herman, Artur P.
1 / 1 shared
Walsh, Aron
2 / 79 shared
Tolborg, Kasper
1 / 6 shared
Kinka, Martynas
2 / 5 shared
Ramos, Miguel Angel
1 / 2 shared
Balciunas, Sergejus
1 / 2 shared
Garbaras, Andrius
1 / 1 shared
Maczka, Miroslaw
1 / 5 shared
Gagor, Anna
1 / 4 shared
Banys, Juras
1 / 41 shared
Svirskas, Sarunas
1 / 3 shared
Wilson, Jn
1 / 3 shared
Samulionis, Vytautas
1 / 3 shared
Simenas, Mantas
1 / 1 shared
Stachowiak, Piotr
1 / 1 shared
Fagnard, Jf
1 / 1 shared
Zhai, Y.
1 / 2 shared
Coombs, Ta
1 / 1 shared
Mucha, Jan
1 / 2 shared
Philippe, Mp
1 / 1 shared
Vanderbemden, Philippe
1 / 27 shared
Hsu, Ch
1 / 1 shared
Chart of publication period
2022
2020
2016

Co-Authors (by relevance)

  • Ptak, Maciej
  • Sieradzki, Adam
  • Gągor, Anna
  • Mączka, Mirosław
  • Nas, Sergejus Balčiū
  • Kalendra, Vidmantas
  • Grigalaitis, Robertas
  • Banys, Jū Ras
  • Svirskas, Šarū Nas
  • Kudrawiec, Robert
  • Klimavicius, Vytautas
  • Pieniążek, Agnieszka
  • Šimėnas, Mantas
  • Herman, Artur P.
  • Walsh, Aron
  • Tolborg, Kasper
  • Kinka, Martynas
  • Ramos, Miguel Angel
  • Balciunas, Sergejus
  • Garbaras, Andrius
  • Maczka, Miroslaw
  • Gagor, Anna
  • Banys, Juras
  • Svirskas, Sarunas
  • Wilson, Jn
  • Samulionis, Vytautas
  • Simenas, Mantas
  • Stachowiak, Piotr
  • Fagnard, Jf
  • Zhai, Y.
  • Coombs, Ta
  • Mucha, Jan
  • Philippe, Mp
  • Vanderbemden, Philippe
  • Hsu, Ch
OrganizationsLocationPeople

article

Low Temperature Thermal Properties of Nanodiamond Ceramics

  • Szewczyk, Daria
  • Ramos, Miguel Angel
Abstract

<jats:p>The temperature dependence of thermal conductivity and specific heat for detonated nanodiamond ceramics is investigated on specially designed experimental setups, implementing the uniaxial stationary heat flow method and the thermal relaxation method, respectively. Additionally, complementary studies with a commercial setup (Physical Property Measurement System from Quantum Design operating either in Thermal Transport or Heat Capacity Option) were performed. Two types of samples are under consideration. Both ceramics were sintered at high pressures (6–7 GPa) for 11–25 s but at different sintering temperatures, namely 1000 °C and 1600 °C. The effect of changing the sintering conditions on thermal transport is examined. In thermal conductivity κ(T), it provides an improvement up to a factor of 3 of heat flow at room temperature. The temperature dependence of κ(T) exhibits a typical polycrystalline character due to hindered thermal transport stemming from the microstructure of ceramic material but with values around 1–2 W/mK. At the lowest temperatures, the thermal conductivity is very low and increases only slightly faster than linear with temperature, proving the significant contribution of the scattering due to multiple grain boundaries. The specific heat data did not show a substantial difference between detonated nanodiamond ceramics obtained at different temperatures unlike for κ(T) results. For both samples, an unexpected upturn at the lowest temperatures is observed—most likely reminiscent of a low-T Schottky anomaly. A linear contribution to the specific heat is also present, with a value one order of magnitude higher than in canonical glasses. The determined Debye temperature is 482 (±6) K. The results are supported by phonon mean free path calculations.</jats:p>

Topics
  • impedance spectroscopy
  • grain
  • glass
  • glass
  • ceramic
  • thermal conductivity
  • sintering
  • heat capacity
  • specific heat