Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Soni, Raj

  • Google
  • 1
  • 3
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Wear Characterization of Laser Cladded Ti-Nb-Ta Alloy for Biomedical Applications5citations

Places of action

Chart of shared publication
Hussein, Hussein Mohammed Abdel Moneam
1 / 1 shared
Natu, Harshad
1 / 1 shared
Kumar, Santosh
1 / 33 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Hussein, Hussein Mohammed Abdel Moneam
  • Natu, Harshad
  • Kumar, Santosh
OrganizationsLocationPeople

article

Wear Characterization of Laser Cladded Ti-Nb-Ta Alloy for Biomedical Applications

  • Soni, Raj
  • Hussein, Hussein Mohammed Abdel Moneam
  • Natu, Harshad
  • Kumar, Santosh
Abstract

<jats:p>Additive manufacturing (AM) has started to unfold diverse fields of applications by providing unique solutions to manufacturing. Laser cladding is one of the prominent AM technologies that can be used to fulfill the needs of custom implants. In this study, the wear resistance of the laser cladded titanium alloy, Ti-17Nb-6Ta, has been evaluated under varied loads in Ringer’s solution. Microstructural evaluation of the alloy was performed by SEM and EDX, followed by phase analysis through XRD. The wear testing and analysis have been carried out with a tribometer under varied loads of 10, 15, and 20 N while keeping other parameters constant. Abrasion was observed to be the predominant mechanism majorly responsible for the wearing of the alloy at the interface. The average wear rate and coefficient of friction values were 0.016 mm3/Nm and 0.22, respectively. The observed values indicated that the developed alloy exhibited excellent wear resistance, which is deemed an essential property for developing biomedical materials for human body implants such as artificial hip and knee joints.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • wear resistance
  • titanium
  • titanium alloy
  • Energy-dispersive X-ray spectroscopy
  • hot isostatic pressing
  • additive manufacturing
  • coefficient of friction