Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Harker, Robert M.

  • Google
  • 1
  • 7
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Structure and Properties of Cubic PuH2 and PuH34citations

Places of action

Chart of shared publication
Gillie, Lisa
1 / 6 shared
Moxon, Samuel
1 / 4 shared
Molinari, Marco
1 / 17 shared
Cooke, David
1 / 5 shared
Smith, Thomas
1 / 2 shared
Silva, Estelina Lora Da
1 / 1 shared
Storr, Mark T.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Gillie, Lisa
  • Moxon, Samuel
  • Molinari, Marco
  • Cooke, David
  • Smith, Thomas
  • Silva, Estelina Lora Da
  • Storr, Mark T.
OrganizationsLocationPeople

article

Structure and Properties of Cubic PuH2 and PuH3

  • Gillie, Lisa
  • Moxon, Samuel
  • Molinari, Marco
  • Cooke, David
  • Harker, Robert M.
  • Smith, Thomas
  • Silva, Estelina Lora Da
  • Storr, Mark T.
Abstract

The presence of cubic PuH<sub>2</sub> and PuH<sub>3</sub>, the products of hydrogen corrosion of Pu, during long-term storage is of concern because of the materials’ pyrophoricity and ability to catalyse the oxidation reaction of Pu to form PuO<sub>2</sub>. Here, we modelled cubic PuH<sub>2</sub> and PuH<sub>3</sub> using Density Functional Theory (DFT) and assessed the performance of the PBEsol+U+SOC (0 ≤ U ≤ 7 eV) including van der Waals dispersion using the Grimme D3 method and the hybrid HSE06sol+SOC. We investigated the structural, magnetic and electronic properties of the cubic hydride phases. We considered spin–orbit coupling (SOC) and non-collinear magnetism to study ferromagnetic (FM), longitudinal and transverse antiferromagnetic (AFM) orders aligned in the ,anddirections. The hybrid DFT confirmed that FM orders in theanddirections were the most stable for cubic PuH<sub>2</sub> and PuH<sub>3</sub>, respectively. For the standard DFT, the most stable magnetic order is dependent on the value of U used, with transitions in the magnetic order at higher U values (U &gt; 5 eV) seen for both PuH<sub>2</sub> and PuH<sub>3</sub>.

Topics
  • density
  • impedance spectroscopy
  • dispersion
  • corrosion
  • phase
  • theory
  • atomic force microscopy
  • Hydrogen
  • density functional theory
  • aligned