People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Muresan, Emil Ioan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023Recycling of Nonwoven Waste Resulting from the Manufacturing Process of Hemp Fiber-Reinforced Recycled Polypropylene Composites for Upholstered Furniture Productscitations
- 2022Thermal and Mechanical Characterization of Coir Fibre–Reinforced Polypropylene Biocompositescitations
- 2019Improving the properties of the polyester fabrics by grafting with 3-chloro-2-hydroxypropyl acrylatecitations
Places of action
Organizations | Location | People |
---|
article
Thermal and Mechanical Characterization of Coir Fibre–Reinforced Polypropylene Biocomposites
Abstract
<jats:p>In recent years, the growth of environmental awareness has increased the interest in the development of biocomposites which are sustainable materials with an excellent price–performance ratio and low weight. The current study aimed to obtain and characterize the biocomposites prepared by thermoforming using coir fibres as reinforcing material and polypropylene as matrix. The biocomposites were produced with different coir fibres/polypropylene ratios and were characterized by physical–mechanical indices, thermal analysis, crystallinity, attenuated total reflection-Fourier transform infrared spectroscopy analysis (ATR-FTIR), scanning electron microscopy (SEM), and chromatic measurements. Both tensile and bending strength of biocomposites decreased when the coir fibre content increased. The melting temperature of biocomposite materials has decreased with the increase of the coir fibre loading. Regarding the thermal stability, the weight loss and degradation temperature increased with decreasing coir fibre content. The ATR-FTIR and SEM analyses underlined the modifications that took place in the structure of the biocomposites by modifying the coir fibres/matrix ratio.</jats:p>