Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dafonte Rodríguez, Pedro

  • Google
  • 2
  • 9
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Structural, Thermal and Functional Properties of a Hybrid Dicyanamide-Perovskite Solid Solution2citations
  • 2022Structural, Thermal and Functional Properties of a Hybrid Dicyanamide-Perovskite Solid Solution2citations

Places of action

Chart of shared publication
García Ben, Javier
1 / 2 shared
Señarís-Rodríguez, M. A.
1 / 6 shared
Salgado-Beceiro, Jorge
1 / 1 shared
Sánchez-Andújar, Manuel
1 / 7 shared
Delgado Ferreiro, Ignacio
1 / 1 shared
López-Beceiro, Jorge
1 / 9 shared
Artiaga, Ramón
1 / 5 shared
Bermúdez-García, Juan Manuel
1 / 3 shared
Castro-García, Socorro
1 / 6 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • García Ben, Javier
  • Señarís-Rodríguez, M. A.
  • Salgado-Beceiro, Jorge
  • Sánchez-Andújar, Manuel
  • Delgado Ferreiro, Ignacio
  • López-Beceiro, Jorge
  • Artiaga, Ramón
  • Bermúdez-García, Juan Manuel
  • Castro-García, Socorro
OrganizationsLocationPeople

article

Structural, Thermal and Functional Properties of a Hybrid Dicyanamide-Perovskite Solid Solution

  • Dafonte Rodríguez, Pedro
Abstract

<jats:p>In Solid-State Chemistry, a well-known route to obtain new compounds and modulate their properties is the formation of solid solutions, a strategy widely exploited in the case of classical inorganic perovskites but relatively unexplored among emergent hybrid organic–inorganic perovskites (HOIPs). In this work, to the best of our knowledge, we present the first dicyanamide-perovskite solid solution of [TPrA][Co0.5Ni0.5(dca)3] and study its thermal, dielectric and optical properties, comparing them with those of the parent undoped compounds [TPrA][Co(dca)3] and [TPrA][Ni(dca)3]. In addition, we show that the prepared doped compound can be used as a precursor that, by calcination, allows CNTs with embedded magnetic Ni:Co alloy nanoparticles to be obtained through a fast and much simpler synthetic route than other complex CVD or arc-discharge methods used to obtain this type of material.</jats:p>

Topics
  • nanoparticle
  • perovskite
  • impedance spectroscopy
  • compound
  • chemical vapor deposition