People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rahman, Mohammed M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Two‐dimensional MXenes as Emerging Materials: A Comprehensive Reviewcitations
- 2023Recent Advances of Transition Metal Dichalcogenides‐Based Materials for Energy Storage Devices, in View of Monovalent to Divalent Ionscitations
- 2023Bimetallic CuO−ZnO Hybrid Nanocomposite Materials for Efficient Remediation of Environmental Pollutantscitations
- 2023Utilizing Nanostructured Materials for Hydrogen Generation, Storage, and Diverse Applicationscitations
- 2022Synthesis, Characterization and Bio-Potential Activities of Co(II) and Ni(II) Complexes with O and N Donor Mixed Ligandscitations
- 2022Efficient Detection of 2,6-Dinitrophenol with Silver Nanoparticle-Decorated Chitosan/SrSnO3 Nanocomposites by Differential Pulse Voltammetrycitations
- 2022Recent advances in hydrogen production using MXenes-based metal sulfide photocatalystscitations
- 2022Sensitive Electrochemical Detection of 4-Nitrophenol with PEDOT:PSS Modified Pt NPs-Embedded PPy-CB@ZnO Nanocompositescitations
- 2020A New Cr3+ Electrochemical Sensor Based on ATNA/Nafion/Glassy Carbon Electrodecitations
- 2019Semiconductor α‐Fe2O3 Hematite Fabricated Electrode for Sensitive Detection of Phenolic Pollutantscitations
Places of action
Organizations | Location | People |
---|
article
Synthesis, Characterization and Bio-Potential Activities of Co(II) and Ni(II) Complexes with O and N Donor Mixed Ligands
Abstract
<jats:p>The synthesis and characterization of Co(II) and Ni(II) mixed ligand complexes are derived from isoniazid, 9-fluorenoneandoxalate. The metal complexes were characterized on the basis of elemental analysis, IR, UV-visible, CV, PXRD, and molar conductance analytical data, viz., all the metal complexes were suggested in an octahedral geometry, respectively. The mixed ligand complexes are formed in the 1:1:2:1 (M:L1:L2:L3) ratios, as found from the elemental analyses, and originate to have the formula [M(L1)(L2)2(L3)]. Where M = Co(II), Ni(II), L1 = isoniazid, L2 = 9-fluorenone, and L3 = oxalate. The molar conductance data reveals that the complexes are non-electrolytes. The cyclic voltammogram of the Co(II) complex revealed that the quasi-reversible single electron transfer process and Ni(II) complex corresponding to a one-electron transfer process were observed during controlled potential electrolysis. IR spectra show that the ligands are coordinated to the metal ions through N and O donor sites of isoniazid-N, 9-fluorenone-O and oxalate-O. Magnetic moment values and UV-visible spectra were used to infer the coordinating of the geometrics of these complexes found to be octahedral. The PXRD patterns suggest that all the complexes are crystalline phases. The metal chelates have been screened for antimicrobial, antioxidant and anti-inflammatory activities, and our findings have been reported, explained and compared with some known antibiotics.</jats:p>